Welcome To Wirocomm

IIIT Delhi

We are a Wireless and Radio Communication (Wirocomm) Research Group at Indraprastha Institute Of Information Technology, New Delhi.

Established December 2014, IIIT Delhi. With an Initiative to promote World Class Wireless Communication Research.

Announcements

Paper accepted in IEEE Access Journal

Paper titled "On the Multi-Band Carrier Aggregated Nonlinear LTE-A System" {P. Aggarwal, V. A. Bohara} is accepted for publication in the IEEE Access Journal.

Paper accepted in IEEE PIMRC 2017

Paper titled "On the Performance of Network-Assisted Indoor Device-to-Device Communication Using Location Awareness and Realistic Path Loss Models" {M. Peer, V. A. Bohara, A. Srivastava} is accepted for publication in the IEEE PIMRC 2017, Canada.

Paper accepted in IEEE GLOBECOM 2017

Paper titled "OFDMA Based Angle-Constrained Underlay Device-to-Device Communication" {N. Gupta, V. A. Bohara} is accepted for publication in the IEEE GLOBECOM 2017, Singapore.

Our Work Focus

4G LTE-A, 4.5G LTE-A pro and 5G

4G Long Term Evolution-Advanced (LTE-A) is an enhancement of LTE which provides high peak data rates, flexible spectrum operations, improved system capacity, large coverage and is compatible with existing systems. Although, it inherits all features of LTE, its own unique features are carrier aggregation, device-to-device communication, advanced antenna techniques, heterogeneous networks (HetNets), etc. Further, 4.5G LTE-A pro and 5G aim to increase the capacity many times, support massive connections with large coverage, provide ultra-reliable and low-latency com- munications, enhance user experience, and improve various efficiency metrics (e.g., spectrum efficiency, energy efficiency).

Carrier Aggregation

Carrier Aggregation (CA) which has been incorporated as one of the feature of LTE-A standard was proposed to enhance the data rates of existing LTE systems. It allows scalable widening of effective bandwidth by combining the multiple carriers to support wideband signals. These carriers may be in the same or different bands, and may be of different bandwidths to provide maximum flexibility in utilizing the scarce radio spectrum.

Device-to-Device Communication

Device-to-device (D2D) is a new communication paradigm which has evolved recently to meet the capacity requirements of next generation cellular networks. In a generic D2D framework, two cellular users living in close proximity can form a direct link for data transmission without routing it through the base station (BS). However control or signaling information between the users will still be carried out by the BS. D2D applications are proximity based services, emergency communication, cellular traffic offloading, Internet-of-things (IoT) enhancement etc.

IEEE 802.11 Standard

IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specifications for implementing wireless local area network (WLAN) computer communication in the 2.4, 3.6, 5 and 60 GHz frequency bands.

Wireless Network Implementation

Wireless telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.