Home Assignment - 5

1. Let $\vec{J}=\frac{400 \sin \theta}{r^{2}+4} \hat{a}_{r} A / m^{2}$. Write a MATLAB program to find the total current flowing through that portion of the spherical surface $r=0.8$, bounded by $0.1 \pi<\theta<0.3 \pi$, and $0<\varphi<2 \pi$.

2. An electric field $\vec{E}=\frac{5 \times 10^{4}}{\rho} \hat{a}_{\rho} \mathrm{V} / \mathrm{m}$ exists in cylindrical coordinates. Find analytically the electric energy stored in the region bounded by $1.0 m<\rho<2.0 m,-2.0 m<z<2.0 m$ and $0<\varphi<2 \pi$ as shown in following Figure. Verify your answer using a MATLAB program

3. An infinite line charge with charge density $\rho_{L}=\rho_{0}$ lies on the z axis. Two infinite conducting planes are located at $y=a$ and $y=a-h$ and both have zero potential. Find the voltage at any given point (x, y). If, $\rho_{0}=1.0 \times 10^{-7} \mathrm{C} / \mathrm{m}, a=1.0 \mathrm{~m}$ and $h=2.0 \mathrm{~m}$, plot the contours of the voltage.

4. Two perfect dielectrics have relative permittivities $\varepsilon_{r 1}=3$ and $\varepsilon_{r 2}=6$. The planar interface between them is the surface $x+y+2 z=1$. The origin lies in region 1 . If $\vec{E}_{1}=24.0 \hat{a}_{x}+$ $36.0 \hat{a}_{y}+42.0 \hat{a}_{z} V / m$, find \vec{E}_{2}. Write a MATLAB program to determine the field \vec{E}_{2} for arbitrary values of the permittivities $\varepsilon_{r 1}$ and $\varepsilon_{r 2}$.
