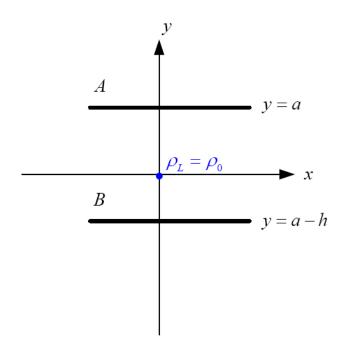

<u>Home Assignment – 5</u>


1. Let $\vec{J} = \frac{400 sin\theta}{r^2 + 4} \ \hat{a}_r \ A/m^2$. Write a MATLAB program to find the total current flowing through that portion of the spherical surface r = 0.8, bounded by $0.1\pi < \theta < 0.3\pi$, and $0 < \varphi < 2\pi$.

2. An electric field $\vec{E} = \frac{5 \times 10^4}{\rho} \hat{a}_{\rho}$ V/m exists in cylindrical coordinates. Find analytically the electric energy stored in the region bounded by $1.0m < \rho < 2.0m, -2.0m < z < 2.0m$ and $0 < \varphi < 2\pi$ as shown in following Figure. Verify your answer using a MATLAB program.

3. An infinite line charge with charge density $\rho_L = \rho_0$ lies on the z axis. Two infinite conducting planes are located at y = a and y = a - h and both have zero potential. Find the voltage at any given point (x, y). If, $\rho_0 = 1.0 \times 10^{-7} \ C/m$, a = 1.0m and h = 2.0m, plot the contours of the voltage.

4. Two perfect dielectrics have relative permittivities $\varepsilon_{r1}=3$ and $\varepsilon_{r2}=6$. The planar interface between them is the surface x+y+2z=1. The origin lies in region 1. If $\vec{E}_1=24.0\hat{a}_x+36.0\hat{a}_y+42.0\hat{a}_z$ V/m, find \vec{E}_2 . Write a MATLAB program to determine the field \vec{E}_2 for arbitrary values of the permittivities ε_{r1} and ε_{r2} .