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Abstract—Unmanned aerial vehicles (UAVs) have the potential
of being used as flying base stations to facilitate a disaster-resilient
communication network. However, the optimal placement of
UAVs over a disaster-affected area must be aware of the mobility
of the ground users. Hence, in this paper, we propose a ground
user mobility aware multi-UAV placement strategy for disaster-
resilient communication network. We formulate an optimization
problem to maximize the number of ground users covered
by the UAVs, while also taking into account the UAV flight
time constraint. Specifically, in this work, the emergency first
responders (EFRs) are considered as the ground users and their
mobility is modeled in the disaster-affected area. We analyze
single-UAV and multi-UAV scenarios in terms of average covered
users and average coverage time. We observe that there exists
a trade-off between the average number of covered users and
average coverage time.

Index Terms—Unmanned Aerial Vehicles (UAV), Disaster-
Resilient Communication, Ground User Mobility Modeling, UAV
Placement Optimization

I. INTRODUCTION

In the aftermath of disasters, man-made or natural, it is
imperative to carry out search and rescue to save as many
lives as possible. The search and rescue team members that
arrive at the disaster location need to maintain effective
communication among themselves as well as with the far-off
disaster control room for sharing the updates. However, the
existing wireline and mobile communication services generally
become non-operational in disaster area. For instance, approx-
imately 1.9 million fixed communication lines and 29,000
base stations were damaged during the Japan tsunami in
2011 [1]. At present, the search and rescue teams depend
on the legacy public safety communication networks like
terrestrial trunked radio (TETRA) in Europe and association
of public-safety communications officials (APCO 25) in US
that support only voice services [2]. It has been suggested
that the public safety communication networks need to be
upgraded with emerging technologies that can support both
voice and multimedia broadband services. The third generation
partnership project (3GPP) Releases 13-15 recommend the
adoption of long term evolution (LTE) technology for the
public safety communication [3]. Further, recent studies have
also demonstrated that the communication coverage in the
disaster scenarios can be enhanced by employing unmanned
aerial vehicles (UAVs) which helps in establishing disaster-
resilient communication networks due to their flexibility and

maneuverability [4]. Moreover, UAVs are capable of offering
low-latency communication services.

With the recent technological advances, it is feasible to
deploy UAVs for the roles of flying/aerial base stations (BSs)
as well as aerial user equipments (UEs) [4]. Specifically, on
using UAVs as flying BSs, the key challenge is the optimal
three-dimensional (3-D) placement of the UAVs for efficient
network performance [5]. The 3-D placement of UAVs has
drawn a lot of attention from the researchers over the last
few years. For instance, authors in [6] have dealt with max-
imization of covered users via optimal 3-D placement of a
single UAV. In [7], the optimal 3-D deployment of multiple
UAVs is investigated to maximize the downlink coverage
performance with minimum transmit power. In [8] and [9],
3-D placement UAV-BSs is studied for maximizing the sum
logarithmic rate of the users and effectively prolonging the
life-time of the network, respectively. Further, they analyzed
the network performance for different user distributions such
as Poisson point process and clustered user distribution.

However, the current literature on 3-D UAV placement has
generally overlooked the mobility aspects of the ground users
in a disaster scenario. Further, in order to facilitate UAV
enabled communication network, a practical fly-hover-and-
communicate protocol has been proposed in [10]. In this pro-
tocol, UAVs primarily have two modes of operation: flight and
hover/communicate. In the hovering or communication mode,
UAVs can provide coverage to the ground users, whereas
in the flight mode, there will be no coverage. Hence, with
respect to the UAV placement problem, if the next optimal
UAV location is far away from the current UAV location the
flight time of UAVs will increase. As stated in [11], the delay
in UAV to ground communication networks is primarily due to
the UAV flight time, which in turn lowers the coverage time.
Consequently, the flight time of UAVs is a crucial parameter in
UAV placement problems. However, most of the prior works,
on optimization of 3-D placement of UAVs in a disaster
scenario, have considered the UAV flight time constraint.
This work overcomes the above drawback by proposing a
ground user mobility aware multi-UAV placement strategy for
a disaster-resilient communication network which also takes
into account the UAV flight time constraint.



A. Related Work and Motivation

Disaster-resilient communication networks, also referred as
public safety communication (PSC) networks, are imperative
to minimize the post-disaster damages. The legacy PSC net-
works can be broadly categorized as satellite communica-
tion networks, locally deployed resource unit (LDRU) based
PSC networks and ad-hoc PSC networks [12]. Satellite com-
munication networks require the use of specialized satellite
phones that are expensive. Further, satellite communication
support very low data rates [2]. LDRU based PSC networks
involve the installation of fixed or movable resource units.
These resource units contain a transceiver, routers, servers
and a power source for establishing a communication network.
However, the installation process can take up to a few days,
which is not desirable. Another possible solution is the ad-hoc
PSC network such as mobile ad-hoc network (MANET) and
wireless mesh network (WMN) that requires no infrastructure.
In ad-hoc networks, connectivity between different nodes in
the network is established using multi-hop routing. This multi-
hop routing is carried out in a distributed manner; hence, ad-
hoc networks are energy inefficient [13]. Ad-hoc networks
are also susceptible to security threats as they utilize the
technologies like Wi-Fi that are not developed on the basis
of PSC requirements.

As mentioned before, LTE based PSC networks are con-
sidered as a promising solution for post-disaster operations.
In inaccessible and remote areas, post-disaster, UAV-BSs can
play a key role [14]. Authors in [15] have developed a
statistical framework to characterize and model UAV based
communication networks in the wake of a disaster where
they considered a clustered deployment of ground users.
However, the ground user mobility can profoundly impact the
network performance if the placement/location of UAVs is not
optimized with the change in the ground user locations. This
limitation was somewhat mitigated by the work in [16]. UAV
coordinates were optimized to maximize the sum throughput
using reinforcement learning where the user mobility was
modelled using random walk model. In the performance
analysis presented in [16], the mobility model assumes that
the users are allowed to move anywhere in the simulated
area. However, the above is not true for the user movements
in a disaster-affected area. In disaster-affected areas, user
movements are generally restricted, hence there is a need to
consider a disaster-specific user mobility model for optimal
UAV placement.

In this work, we propose a UAV based disaster-resilient
communication network and optimize the 3-D placement of
multiple UAVs in order to maximize the number of ground
users covered in a disaster-affected area while taking into
account the UAV flight time constraint. Unlike the prior works
on UAV placement in a disaster scenario, the proposed strat-
egy considers a disaster-specific ground user mobility model.
Specifically, in this work, the emergency first responders
(EFRs) are considered as the ground users and their mobility
is modeled in the disaster-affected area. We demonstrate the
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Fig. 1. Network Model.

results for single-UAV and multi-UAV scenarios in terms of
average number of covered users and average coverage time
in a disaster-resilient network. To the best of our knowledge,
the proposed work is first of its kind for multi-UAV placement
which utilizes a disater-specific user mobility model and also
considers a flight time constraint for UAVs.

II. NETWORK MODEL

We consider a disaster scenario with damaged cellular
infrastructure as shown in Fig. 1. For the ground users (in
this work, EFRs) to communicate with each other as well as
with the disaster control room, a disaster-resilient network is
established which consists of multiple UAVs. The set U of
UAVs act as flying BSs and are present in a 3-D space. A
ground user in set U , present in the 2-D space, is said to
be covered by a UAV if it is present within the coverage
radius of the UAV. Hence, as the ground users move over
time, UAV locations need to be updated in order to provide
coverage to the ground users. As mentioned in Section I,
UAVs are either in flight or hover mode. It is assumed that the
ground users1 periodically update their locations on the cloud
[17]. Further, it is assumed that UAVs and users are allocated
independent time-frequency resources for operation. In case
of disaster, the network topology information can be utilized
by the centralized software defined network (SDN) to route
the traffic of UAVs [18]. The centralized SDN controller also
manages the control signals to the UAVs. Further, an active
BS, closest to a UAV deployed in the disaster area, can act as
the backhual node [19]. UAVs can receive the control signals
via inter-UAV2 and UAV to backhual node links.

As mentioned before, the mobility of the ground users
impacts the coverage performance of the network. Hence, the
modelling of the ground users’ mobility in a disaster scenario

1Specifically, EFRs can be equipped with satellite devices like satellite
emergency notification device (SEND).

2There exists inter-UAV links as shown in Fig. 1 [20].



is required to do an efficient analysis of the UAV placement
strategy.

A. Disaster Mobility Model

We adapt the mobility model for disaster area scenarios as
given in [21] where the disaster area is divided into different
zones based on the task to be performed in each zone. The
disaster mobility model has been illustrated in Fig. 2. Zone 1
i.e., the incident site, consists of the disaster-affected people
that need to be rescued. The affected people are taken to the
zone 2 i.e., patient waiting area, where they are provided with
the initial diagnosis and first aid treatment. Zone 3 i.e., the
casualties clearing station, consists of the affected people who
may need immediate care and hospitalization, and should be
taken to the hospital. Zone 4 i.e., the technical operational
command consists of the group of volunteers that strategize
the search and rescue operations. Depending on the disaster
rescue strategies, ground users will be assigned different zones.
Similar to [21], we consider two types of ground users:
stationary and transport ground users. Stationary ground users
are restricted to a specific zone whereas transport ground users
can move between two adjacent zones in a cyclic manner, i.e.,
zone j to zone j + 1 and back to zone j, j ∈ {1, 2, 3}. In
our work, we assume that the ground users move in random
directions and with random velocities within the assigned
zones. Ground users walk from one location to another, take a
pause at the new location to perform a task and then move to
a different location. This means the walk time and pause time
occur alternately. However, for the ease of analysis, the walk
time, twalk of a ground user is kept constant and is assumed to
be same for all ground users. Further, after each transition, the
ground users are assumed to pause for a fixed amount of time.
We term this as a synchronized mobility scenario, wherein the
ground users walk and pause at the same time.

As mentioned above, depending on the user mobility, UAV
locations need to be updated at regular intervals [16]. Due
to the transitions during twalk interval user locations will be
more dynamic; hence, let the optimal UAV placement decision
be taken at the beginning of each tpause of the ground users.
This will ensure that the UAV placement decisions remain
optimal for a longer time. Hence, the time interval between
two decisions, tint consists of one tpause and twalk interval,
i.e., tint = tpause + twalk. Further, as mentioned above,
UAV placements will not be optimal during twalk interval.
Hence, tpause must consist of UAV flight time (tfly) and
coverage time (tcov), where tcov denotes the time within which
maximum users are covered by UAVs. Therefore, in proposed
analysis, two independent timelines denoting UAV operation
and ground user mobility have been utilized. Specifically,
UAVs’ operation with parameters tfly and tcov , and ground
users mobility with parameters tpause and twalk have been
coupled together as a single timeline of UAV placement as
illustrated in Fig. 3. At the nth decision instant, optimal UAV
locations are determined for the upcoming nth pause time in
the network. It may be noted that unlike tpause and twalk, tfly
and tcov are random variables and there values depend on the
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Fig. 2. Zone-wise representation of Disaster Area
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Fig. 3. Illustration of UAV Placement timeline.

optimal UAV placements. Hence, in the optimization problem,
the permissible limit of tfly must be set less than tpause to
have a non-zero tcov .

III. PROBLEM FORMULATION

The aim is to find the optimal placement of the UAVs to
maximize the covered users such that tfly constraint is met.
The coordinates of the kth user (represented by ‘square’ in
Fig. 4) at the nth decision instant are (xuk(n), yuk (n)). Let
the optimal coordinates of the ith UAV after the nth decision

Ground users/ EFRs

Current UAV placement

Optimal UAV placement

Coverage at optimal UAV 

placement

Fig. 4. 2-D illustration of the ground users along with a UAV’s current and
new placement.



instant be (xi(n), yi(n), zi(n)) where (xi(n), yi(n)) denotes
the horizontal placement of UAV and zi(n) denotes the UAV
altitude in the 3-D space. However, for a given quality of
service (QoS) requirement, as shown in [22], to maximize
the coverage evaluation of the optimal altitude, zi(n) can be
decoupled from the horizontal placement, (xi(n), yi(n)) of
UAV in the 2-D plane. The QoS requirement is the pathloss,
PLth which should not be exceeded3. Let all the UAVs be
present at the optimal altitude, zopt and have a maximum
coverage radius R. Hence, we will focus on the 2-D placement
of UAVs in the horizontal plane where xi(n) and yi(n) are
continuous variables.

In Fig. 4, ‘circle’ represents the current 2-D placement of a
UAV, (x∗i (n− 1), y∗i (n− 1)) which was optimal for the (n−
1)th tint interval. The ‘triangle’ denotes the newly selected
placement of a UAV at the nth decision instant. Let Iik be
the distance between kth user’s location at the nth decision
instant and ith UAV’s location selected at the nth decision
instant i.e., the distance between the triangle and each of the
squares in Fig. 4. Also, Ii denotes the distance between the
ith UAV’s optimal location at the (n − 1)th decision instant
and ith UAV’s location selected at the nth decision instant4.

Iik =

√(
xuk(n)− xi(n)

)2
+
(
yuk (n)− yi(n)

)2
(1)

Ii =

√(
xi(n)− x∗i (n− 1)

)2
+
(
yi(n)− y∗i (n− 1)

)2
(2)

The formulated optimization problem at the nth decision
instant is given in (3a)-(3e). (3a) is the number of users
covered by the UAVs where 1() is an indicator function that
is ‘1’ when a user is within the coverage of a UAV. (3b) is the
flight time constraint that ensures that tfly = Ii/Vuav is less
than or equal to tmax

fly where tmax
fly is the permissible limit on

tfly. The constraint (3c) is applied such that a ground user is
only served by a single UAV. The UAV’s x and y coordinates
should be within the range [xmin, xmax] and [ymin, ymax] as
accounted for in (3d) and (3e), respectively.

maximize
{xi(n), yi(n)}

∑
i

∑
k

1(Iik ≤ R), i ∈ U , k ∈ U (3a)

subject to
Ii
Vuav

≤ tmax
fly , ∀i ∈ U , (3b)∑

i

1(Iik ≤ R) ≤ 1, ∀k ∈ U, i ∈ U , (3c)

xmin ≤ xi(n) ≤ xmax, ∀i ∈ U , (3d)
ymin ≤ yi(n) ≤ ymax, ∀i ∈ U (3e)

The objective function (3a) and constraint (3c) can be re-
formulated by introducing a binary decision variable, Y i

k to
replace the indicator function as shown in (4a) and (4d), re-
spectively. Consequently, a new constraint (4b) is introduced to
take care that the condition Iik ≤ R is met. Here, M is a large

3For the air-to-ground (AtG) channel model and optimal altitude evaluation
interested readers may refer to [22].

4It is assumed while travelling from one location to another UAVs follow
a straight line trajectory.

TABLE I
USER PLACEMENT IN DISASTER-AFFECTED AREA

Users = 10 Users = 20
Stationary Transport Stationary Transport

Zone 1 0 2 0 8
Zone 2 2 2 4 2
Zone 3 2 0 3 0
Zone 4 2 0 3 0

constant. If Iik ≤ R then Y i
k will have value 1. Otherwise, Y i

k

will be 0. Specifically, Y i
k is an association variable which

decides the users to be served by a UAV. The constraints (4e)
and (4f) are same as constraints (3d) and (3e), respectively.
Constraint (4g) is to ensure that Y i

k has binary values. The
optimization problem consists of continuous variables xi(n),
yi(n) and binary/integer variables Y i

k . Further, the objective
function (4a) is linear and the constraints (4b) and (4c) are
quadratic. Hence, this optimization problem is a mixed-integer
quadratically constrained problem (MIQCP) [23]. The formu-
lated problem (4a)-(4g) can be solved using IBM CPLEX
solver because, in our case, the objective function is linear
and the quadratic constraints are convex.

maximize
{xi(n), yi(n), Y i

k}

∑
i

∑
k

Y i
k , i ∈ U , k ∈ U (4a)

subject to Iik − (1− Y i
k )M ≤ R, ∀i ∈ U ,∀k ∈ U,

(4b)
Ii
Vuav

≤ tmax
fly , ∀i ∈ U ,

(4c)∑
i

Y i
k ≤ 1, ∀k ∈ U, i ∈ U ,

(4d)
xmin ≤ xi(n) ≤ xmax, ∀i ∈ U ,

(4e)
ymin ≤ yi(n) ≤ ymax, ∀i ∈ U ,

(4f)

Y i
k ∈ {0, 1}, ∀i ∈ U ,∀k ∈ U

(4g)

IV. SIMULATION RESULTS

In this section we analyze the performance of the proposed
multi-UAV placement strategy for disaster-resilient communi-
cation network. We consider a disaster area of size 900× 500
sq. m in a dense urban environment. Zone 1 has dimensions
300 × 500 sq. m and rest of the zones have dimensions
200×500 sq. m each. Table I states the zone wise assignment
of the ground users considered in our analysis. A ground user
is either a stationary or transport node as explained in Section
II. The other simulation parameters are provided in Table II.
We assume that tpause = 60 seconds, twalk = 40 seconds and
the user speed, vu is uniformly distributed in [2, 3] m/s. A
ground user is covered by a UAV when the pathloss does not
exceed PLth. Further, UAVs are assumed to fly at a constant
speed, Vuav . We consider Vuav = 18 m/s unless otherwise
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Fig. 5. Performance of proposed UAV Placement Strategy with 10 users and
single UAV, tpause = 60 seconds.
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Fig. 6. Performance of proposed UAV Placement Strategy with 20 users and
single UAV, tpause = 60 seconds.

stated [24]. The simulation results are averaged over two hours
of UAV operation in the disaster-affected area.

We know from Section II that tmax
fly must be less than

tpause to have a non-zero tcov . Let us analyze the network
for a range of tmax

fly by setting tmax
fly = ρtpause where

ρ = {0.1, 0.2, · · · , 0.9}. Fig. 5 exhibits the performance of the
proposed UAV placement strategy with a single UAV. It can be
observed that with increase in ρ or tmax

fly , the average number
of covered users increases whereas the average coverage time

TABLE II
SIMULATION PARAMETERS

Parameter Value
tpause 60 seconds
twalk 40 seconds
PLth 83, 85 and 87 dB (Dense urban environment)
Vuav 8 to 18 m/s
vu [2, 3] m/s
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(t̄cov) decreases. This is because an increase in ρ provides a
greater flexibility for UAV movement in order to increase the
number of covered users; hence, a decrease in t̄cov . There
exists a trade-off between the average number of covered
users and t̄cov . However, the trade-off becomes insignificant
at higher ρ as the rate of increase of the average number of
covered users starts to decrease at higher ρ. For instance, with
10 users, at PLth= 83 dB, the rate of increase of the average
number of covered users starts to decrease after ρ = 0.3.
However, the average coverage time keeps on decreasing at
a faster rate. Lower t̄cov implies that the covered users are
served by the UAVs for shorter time duration; hence, decreases
the network resilience temporally. With efficient selection of
the permissible limit of the UAV flight time reduction in t̄cov
is feasible.

Further, it can also be observed from Fig. 5 that t̄cov
increases with the increase in PLth. This is because at
higher PLth the maximum coverage radius of UAV increases.
Consequently, on an average, UAV does not need to displace
a lot from its current location and t̄cov is higher. It can
also be observed from Fig.5 that with increase in PLth the
number of covered users increase. Fig. 6 exhibits the network
performance with 20 users. With increase in the number of
users in the network it is obvious that the average number of
covered users will increase as seen in Fig. 6. Further, similar
to the case with 10 users, the average number of covered users
increases with ρ as well as PLth.

Figs. 7, 8 and 9 present results for two UAVs with 10 users
and 20 users, and three UAVs with 10 users, respectively. It
can be observed that for the same ρ and PLth average number
of covered users increases with the number of UAVs. This is
because, with increase in UAVs, the total area covered by the
UAVs increases. Further, similar to the single UAV case, the
rate of increase of the average number of covered users starts
to decrease at higher ρ. In case of multiple UAVs, due to the
(4d) constraint which requires no two UAVs to associate with
the same user, UAVs need to fly a longer distance. Hence, t̄cov
is lower as compared to single UAV.

Further, we have also analyzed the proposed strategy for
different values of Vuav . Fig. 10 demonstrates the plot for
average covered user and t̄cov at PLth = 83 dB with an
increase in ρ. It can be observed that at higher values of ρ,
irrespective of Vuav , average number of covered users saturates
to the same value. However, higher the UAV velocity higher
is t̄cov . Given this information, it may seem advantageous to
have a higher UAV velocity. However, this may not hold true.
Based on the power consumption model for rotary wing UAV,
a promising contender for disaster scenarios, average energy
consumption per tpause interval at a specific value of Vuav can
be evaluated as follows5 [24]:

Etotal(Vuav) = Pht̄cov + Pf (Vuav)t̄fly (5)

5Energy consumption due to communication is negligible as compared to
propulsion energy consumption; hence, not considered here [24]. Further,
during twalk UAV will always be hovering and will have a constant energy
consumption irrespective of Vuav ; hence, not considered here.
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Fig. 10. Performance of proposed multi-UAV Placement Strategy with 10
users, tpause = 60 seconds, single UAV and Vuav ranges from 14 m/s to 22
m/s.
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Fig. 11. Performance of proposed multi-UAV Placement Strategy with 10
users, tpause = 60 seconds, single UAV and Vuav ranges from 14 m/s to 22
m/s.

where Ph is the power consumption due to hovering and
Pf (Vuav) is the power consumption due to flight of UAV.
The energy consumption is plotted in Fig. 11. On increasing
Vuav , there is a reduction in t̄fly and an increase in Pf (Vuav).
However, the impact of t̄fly is dominant. Consequently, the
energy consumption due to flight decreases with Vuav . Further,
on increasing Vuav , t̄cov i.e., the hovering time during tpause
will increase and will result in increase in energy consumption
due to hovering. Therefore, the overall energy consumption at
the UAV increases.

V. CONCLUSION

We have proposed a ground user mobility aware multi-
UAV placement strategy for a disaster-resilient communication
network. The disaster-affected area has been divided into four
zones and EFRs/ground users are assigned different zones. For
developing a ground user mobility aware strategy, we have
modeled the mobility of ground users within their assigned



zones. Based on the above, an optimization problem has
been formulated to maximize the number of covered users
while taking into account the UAV flight time constraint. We
observed that there exists a trade-off between the average
number of covered users and average coverage time. Further,
UAV flight time constraint is more crucial in multi-UAV
scenario as compared to single UAV scenario. This is due
to the fact that multi-UAV scenario tend to have a lower
average coverage time as compared to single UAV scenario
with increase in UAV flight time permissible limit. It has
also been observed that with increase in UAV velocity, for
a given average number of covered users, average coverage
time increases. However, the overall energy consumption at
a UAV increases with increase in UAV velocity because the
increase in energy consumption due to hovering surpasses the
decrease in energy consumption due to flight.
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