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This paper presents a visible light communication (VLC) -
based predictive system for estimating an obstacle’s height and
location in an indoor environment. Two types of indoor environ-
ments having one and four LED’s respectively are considered for
the simulation. In each of the above environments, the system is
first simulated using an infinitely thin obstacle and then using an
obstacle having a radius of 0.05m. Linear Regression is applied
to the results to develop a predictive algorithm to obtain the
location and height of an obstacle from the received power profile.
Finally, the accuracy of the predictive system for each of the
above scenarios is also measured.

Index Terms—Visible Light Communication, Indoor position-
ing, Machine learning (ML), Light-emitting-diodes LEDs.

I. INTRODUCTION

There has been a recent increase in the popularity of
location-based services due to developments in wireless sen-
sor networks and physical networking technology. Indoor
positioning garners much attention due to its wide applica-
tion spectrum, including large shopping malls, underground
parking, lofts and storage spaces, etc. Several indoor posi-
tioning technologies, such as those based on assisted global
positioning system (A-GPS), a pseudo-satellite (Pseudo lite),
wireless local area network (WLAN), radio frequency tags
(RFID), Zigbee, Bluetooth (BT), ultra-wideband radio (UWB),
infrared, computer vision, magnetic, ultrasonic, and visible
light, are being looked into to achieve high-precision indoor
navigation [1] [2] [3] [4]. However, GPS positioning is not
suitable for indoor systems due to the building Walls, which
result in high path loss. Due to high attenuation in air, UWB
based positioning is also not suitable for large indoor environ-
ments. WLAN positioning uses a fingerprint library method for
positioning, which is complicated to set up, and the positioning
accuracy is also relatively low [5]. Other positioning methods,
such as infrared, Zigbee, and Bluetooth, are vulnerable to
fluctuations in signal sources [6]. In light of these indoor
positioning systems’ shortcomings, [7] Visible Light-based
position emerges as a viable alternative. From the practical
point of application, the LED-based visible light positioning
(VLP) system has great potential. In a VLP system, LEDs are
used as transmitters, and photodetectors are commonly used
at the receiver end for visible light localization [8].Yoshino
proposed a positioning system based on a visible light image
sensor [9].

Visible light communication (VLC) is a relatively new
technology that recently became the subject of exploration

within the academic and industrial research for indoor po-
sitioning [10]. It offers high bandwidth, high positioning
accuracy, and immunity from electromagnetic interference’s
[11]. It can also be used without a prior license. Moreover,
no large scale changes are required as they can be integrated
seamlessly within the existing infrastructure. The two pri-
mary components of the VLC-based indoor positioning are:
LED transmitters and photodiode (PD) optical receivers. LED
transmitters are installed at fixed locations inside a room and
continuously transmit their position coordinates encoded as
an optical signal. The LED’s transmitted optical signals are
affected by multipath propagation, shadowing, and interfer-
ence from various noise sources. Thus, a considerable amount
of research has been done to find suitable implementation
techniques for the VLC based indoor positioning system (IPS)
to achieve high positioning accuracy [12]. Based on received
signal strength (RSS), a simple regression-based approach with
linear and nonlinear least square estimations (LLS & NLS)
have been shown in [13]. The regression approach’s perfor-
mance is evaluated by different metrics such as the average,
standard deviation, and cumulative distribution function of the
localization error. A key conclusion of this work is that using
the regression method enhances the VLC indoor positioning
system’s performance.

This paper aims to test the accuracy of RSS-based po-
sitioning in determining an obstacle’s height and location
in an indoor environment. This is done by developing a
predictive system using simulations and Linear Regression. In
the first part, the system is simulated using a single object
of negligible width (essentially a line).In the second part,
the system is simulated using a single object with a finite
radius. The simulation’s radius is taken as constant (=0.05m).
The results obtained from the simulation are used to develop
a predictive system with the Linear Regression algorithm.
The predictive system then provides an obstacle’s height
and location based on the resultant Received Power Profile.
Though indoor positioning using VLC is an established area
of study, this paper’s novel feature is constructing an algorithm
that calculates the blockage’s height and location based on
RSS. Such an algorithm can be used in an indoor environment
to remotely construct a 3d model of a room using a relatively
cheap apparatus consisting of LEDs and optical photodiodes.
The model can also be easily expanded to include multiple ob-
stacles and dynamic obstacles and can be used for surveillance
and monitoring in an indoor environment.

The rest of the paper is organized as follows. Section
II presents the system model for the proposed VLC based



2

predictive system with the VLC channel model, spatial model,
simulation model, and regression model. The obtained simula-
tion results have been discussed in Section III. Finally, Section
IV concludes the paper.

II. SYSTEM MODEL

As mentioned before, we consider two setups of 1 and 4
LEDs in an indoor environment of a 5 m×5 m×3 m room. In
the single LED setup, the LED is placed at the ceiling’s centre,
whereas for the four LED configuration, the LED’s are at the
midpoints of the diagonals from the centre to the vertices. The
Received Power profiles in the absence of an obstacle for both
the setups can be seen in Fig 1(a) and Fig 1(b), respectively.

In the following subsections, we discuss in detail the VLC
channel model,the spatial model of the obstacles, the simula-
tion model and the regression model used.

A. VLC Channel Model

Lambert radiator is a typical radiation model that can model
the LED light source in VLC [14]. Radiation patterns of few
commercially available LEDs are assumed to be Lambertian.
H(0) is the channel gain of LoS component, which is given
as:

H(0) =

{
(m+ 1)A

2πD2
d

cosm(φ)Ts(ψ)g(ψ) cos(ψ)

0 ≤ ψ ≤ ψc ,

(1)

where m represents Lambertian order defined as:

m =
−ln(2)

ln(cos(φ 1
2
))

. (2)

In (1), A is the physical area of the PD, Dd is the distance
between the VLC transmitter and the receiver, ψ is the angle
of incidence, φ is the angle of irradiance, ψc is the receiver
field of view (FOV), Ts(ψ) is the gain of the optical filter, and
g(ψ) is the gain of the optical concentrator given as:

g(ψ) =

{
n2

sin2(ψc)
, 0 ≤ ψ ≤ ψc, (3)

where n is the refractive index of optical concentrator and φ 1
2

is LED half beam angle.

B. Spatial Model

Consider the scenario illustrated in Fig. 2, where a trans-
mitter (Tx) is located at a certain height hT above the ground.
As stated before, we model the blockages as cylinders [15]
with a certain height, hB , and the base diameter of r. For
the purpose of simulations, two different types of obstacles
are considered in this paper. In the first part, an infinitely thin
obstacle is considered, which is represented by the black line
in Figure 2. An infinitely thin object can be considered as a
line of a certain height and is a purely theoretical construct.
In the second part, an obstacle having some finite radius, here
taken to be constant and equal to 0.05m, is considered. The
blue diffused region represents such an object in Figure 2 and
is much closer to real-life obstacles.

As illustrated in Fig 2, a blockage of height hB present
between the LED and the receiver, results in a communication
link blockage. The distance of the blockage and the receiver
from LED is denoted by dB and dT , respectively.

C. Simulation Model

The room floor, which is (5×5) m, is assumed to be a
Cartesian plane spanning from -2.5 to 2.5 on both the axes
with a least count of 0.1 m. The centre of the room is assumed
to be the Origin. The obstacle’s location is simulated by taking
two random values in the span of (-2.5,2.5) as the X and Y
coordinates. The height of the obstacle is taken to be a random
value between 4’8” and 6’4” feet, which is assumed to be the
approximate range of human height. The simulation is then
carried out 1000 times using the VLC channel model with the
constants’ value given in Table 1, each time taking an obstacle
at a random location and of a random height, and the resultant
received power profile (RPP) is recorded. Thus, the 1000 data
points are then divided roughly into a training set and a test set
in a roughly 4:1 ratio. The training set is used to train the linear
regression algorithm and obtain predictive parameters. The test
set is then used to calculate the accuracy of the predictive
parameters by using them to predict the obstacle’s height and
location from the resultant RPP and comparing them to the
actual values.

TABLE I
SYSTEM MODEL PARAMETERS

Parameter Value
Room size 5 m× 5 m× 3 m
LED transmitted power 20 mw
Refractive index n 1.5
Optical filter gain Ts 1
LED irradiance angle 56◦

Receiver elevation 90◦

Receiver active area 1 cm2

Field of views (FOVs) of receiver 70◦.
Blockage radius 0.05 m
Responsivity (R) 0.5 A

W
Signal bandwidth Bs 10 MHz
Noise bandwidth factor I2 0.562
Background current Ibg 100 µA

D. Regression Model

The training set is used to train the linear regression algo-
rithm and obtain the predictive parameters. In this paper, we
have used the standard Multivariate Linear Regression model,
where the hypothesis function is given by (4), and the cost
function is given by (5). Here, X is a matrix that contains
values derived from the difference between the RPP with and
without the obstacle given in Figure 5-8(b). It includes the
distance and the coordinates of the point at which the value is
maximum and the shadow’s length. Y is a matrix containing
the actual value of the obstacle’s height and location, and θ is
a matrix representing the predictive parameter, and its initial
value is taken as zero.

hθ(x) = θT ×X = θ0x0 + θ1x1 + θ2x2 + .......+ θnxn (4)
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(a) Single LED setup (b) Four LED setup

Fig. 1. Received Power Profiles without obstacle

Fig. 2. Schematic for calculation of shadow length due to blockage

Fig. 3. Parameter training using Linear Regression

J(θ0, θ1, ...., θn) =
1

2m

m∑
i=1

[hθ(x
i)− yi]2 (5)

After X and Y are obtained from the simulation, gradient
descent, given in algorithm 1 where α is the learning rate,
is used to find the value of θ for which the Cost Function,
(5), is minimum. This value of θ is taken as the predictive
parameters, as shown in Fig 3.

Fig. 4. Predictive Algorithm obtained from the results of Linear Regression

The value of θ calculated above is used to make a Predictive
algorithm that calculates the height and location of the obstacle
based on the received power profile, as shown in Fig. 4.

Algorithm 1: Gradient Descent
Result: Predictive Parameters : θ
initialization θ = 0 ;
repeat until convergence {

θi = θi − α
∂

∂θi
J(θ0, θ1, ...., θn) } (6)

III. RESULTS AND DISCUSSION

In this section, we present the simulation results for the
proposed predictive VLC system with obstacles. The test set is
used to calculate the accuracy of θ generated final value using
gradient descent by using it to predict the height and location
of the obstacle from the resultant RPP and comparing them
to the actual values. The accuracy of location and height are
calculated using (7) and (8), respectively, where the predicted
values are calculated as (θ ×Xtest) and the actual values are
Ytest and n is the number of data points in the test set. The
accuracy values obtained in each given scenario are listed in
Table 2, and the equation of accuracy is discussed below:

Location Accuracy =

∑n
i=1

√
(x̂− x)2 + (ŷ − y)2

n
(7)
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TABLE II
ACCURACY MATRIX

Obstacle Setup A (One LED) Setup B (Four LED)
Location accuracy (cm) Height accuracy (cm) Location accuracy (cm) Height accuracy (cm)

Infinitely Thin Object 24.0120 16.5471 (99.9054%) 67.1274 14.7338 (99.9159%)
Object with finite Radius 3.5713 14.5927 (99.9135%) 5.4277 12.1816 (99.9293%)

(a) Received Power Profile (b) Difference b/w RPP with and without obstacle

Fig. 5. Infinitely thin obstacle is at (-0.9,-0.6) with height = 1.7 m (roughly 5’6”) for single LED setup

(a) Received Power Profile (b) Difference b/w RPP with and without obstacle

Fig. 6. Infinitely thin obstacle is at (-1.3,-1.4) with height = 1.7 m (roughly 5’6”) for four LED setup

Height Accuracy =

∑n
i=1 |ĥ− h|

n
(8)

Accuracy(%) =

∑n
i=1

|ĥ−h|
h

n
(9)

where x̂ and ŷ are the predicted location of actual location
x and y. Similarly, ĥ is the predicted height of actual height
h, and n is the total number of iteration.

A. Received Power Profile with infinitely thin object

The received power profile for an infinitely thin obstacle
kept in a setup with a single LED and four LEDs can be
observed in Figs 5 and 6, respectively.

The predicted value for location depends mainly on the
nearest cartesian point, which is affected due to the presence
of the obstacle. In the case of an infinitely thin obstacle, only
the co-linear points with the obstacle and the LED are affected.
Hence the nearest affected point may be quite far, which is the
reason the accuracy of location is very low. The accuracy for
height is also marginally lower for an infinitely thin obstacle
because all the points that lie in the shadow of the obstacle
are not affected. Hence, the full length of the shadow is not
recorded.
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(a) Received Power Profile (b) Difference b/w RPP with and without obstacle

Fig. 7. Obstacle having finite width(=0.05m) is at (-0.9,-0.6) with height = 1.7 m (roughly 5’6”) for single LED setup

(a) Received Power Profile (b) Difference b/w RPP with and without obstacle

Fig. 8. Obstacle having finite width(=0.05m) is at (-1.3,-1.4) with height = 1.7 m (roughly 5’6”) for four LED setup

B. Received Power Profile with an object of finite radius

The received power profile for an obstacle with a radius of
0.05m kept in a setup with a single LED and with four LEDs
can be seen in Figs 7 and 8, respectively.

From Table II, we can see that the accuracy of location
increases in the case of an object having a finite radius
(=0.05m). This is because the object now casts a definite
shadow, and all the cartesian points lying in the shadow of the
obstacle are affected in its presence. Similarly, the accuracy
of height also increases as now the full length of the shadow
is recorded.

The accuracy for location is lower in the case of a four
LED setup because there is a different nearest affected point
corresponding to each LED, which results in lower accuracy.
On the other hand, the accuracy of height is greater for 4
LEDs because, in the case of a single LED, the shadow of an
obstacle placed at the room’s fringes goes beyond the room’s
boundary, and the full length cannot be measured. Whereas in
the case of 4 LEDs, 4 different shadows are formed, and there

is a higher correlation between the measured shadow and the
actual shadow.

IV. CONCLUSION

This paper presented a predictive system for estimating the
height and location of an obstacle. This is realized by an
RSS based method using modulated LEDs. The system is
simulated using an infinitely thin blockage and then with a
blockage having a constant finite radius (= 0.05m). Based
on the results of the simulation, a predictive algorithm is
built using multivariate linear regression. The accuracy of the
predictive algorithm developed is reasonably high as it predicts
the location of the obstacle within 5 cm and the height within
15 cm.
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