
Energy Resource Allocation for Green FiWi
Network using Ensemble Learning

Akshita Gupta1, Halwai Sakshi Gupta2, Vivek Ashok Bohara1, and Anand Srivastava1

1Wirocomm Research Group, Department of Electronics & Communication Engineering,
Indraprastha Institute of Information Technology Delhi (IIITD), New Delhi, 110020, India.

2Cochin University of Science and Technology, University in Kochi, Kerala
Email: akshitag@iiitd.ac.in, sakshi81818@gmail.com, vivek.b@iiitd.ac.in, anand@iiitd.ac.in

Abstract—In this paper, we utilize a random forest regression
based ensemble learning to effectively predict the solar power
available for the fiber-wireless (FiWi) network components, such
as optical network units (ONUs) and access points (APs) which is
collectively known ONU-AP. Thereafter, a joint energy resource
allocation framework is proposed to minimize the required
number of photovoltaic (PV) panels and batteries. To solve
the joint energy resource allocation problem, we divide it into
two sub-problems, minimum PV panel allocation for a fixed
number of batteries and minimum battery allocation for a fixed
number of PV panels. The two sub-problems are further solved
using the proposed MinBatAlloc and MinPVAlloc algorithms.
Moreover, we introduce a system parameter α, that signifies
the ratio between solar power supplied to operate ONU-AP and
to charge the batteries. The results are shown by varying α
and its impact on the energy resource allocation and battery
lifetime. We compare the performance of our proposed approach
with non-ML based approaches, such as, maximum, minimum,
median, and outage threshold based energy resource allocation.
Through the obtained results it has been shown that the proposed
approach considerably improves the performance in terms of
outage, lifetime, carbon dioxide emissions, and cost.

Index Terms—Fiber-wireless (FiWi), Joint energy resource
allocation, Wind turbine, Lifetime, Cost-analysis, Carbon dioxide
(CO2) emissions.

I. INTRODUCTION

Green access network, i.e., energy-efficient access network
has been a focus of recent literature as it reduces the depen-
dency on non-renewable sources of energy and also facilitate
the path to a sustainable future. Moreover, it also alleviates
the reliance on intermittent grid power supply while reducing
the carbon footprint [1]. In 2021, the electricity generation
from renewable sources is expected to be 8300 TWh, with
the major electricity generation in China, followed by United
States, European Union, and India [2]. Further, the electricity
generation from solar and wind panels is expected to cover
about two-thirds of the renewable electricity market [2].

The information and communications technology (ICT)
sector is expected to have a yearly growth rate of 5% from
2021-2023 [3]. The carbon emissions from ICT is estimated
to increase by 1.4% in 2021 [4]. The carbon-dioxide (CO2)
emissions is going to increase further as the demand for
ubiquitous and uninterrupted coverage increases. However, the
above can be alleviated by usage of green sources such as wind

and solar energy. One of the major limitations of green sources
is their intermittent availability and variation depending on
the location. As a consequence, depending on the location
and utilization, it is important to plan the energy resource
allocation so as to ensure that the green resources are neither
under-utilized nor over-utilized.

A. Related Works

Fiber-wireless (FiWi) network combines the advantages of
fiber backhaul network with wireless fronthaul. FiWi network
consists of passive optical network (PON) as the backhaul net-
work with wireless network such as, wireless fidelity (WiFi),
wireless local area network (WLAN), etc. as the fronthaul [10],
[11]. As these networks need to be operated round the clock,
therefore it is imperative to allocate energy resources to the
network such that the network is cost efficient. In [12], the au-
thors have proposed a frame aggregation for Internet of things
(IoT) over FiWi network. The authors used load transfer along
with frame aggregation to reduce the energy consumption
of the FiWi network. Depending on the channel quality, the
length of the aggregated frame is computed. Further, in order
to maximize the sleep duration of optical network unit (ONU),
the traffic is prioritized based on the delay requirement of voice
and video traffic. This in turn, reduces the retransmission of
packets due to poor channel quality, and thus, reduces the
excessive energy consumption of the network. The authors
in [13] proposed an iterative search algorithm for energy-aware
collaborative computation offloading. The proposed algorithm
not only increases the battery lifetime of the smart mobile
devices but also increases the energy efficiency of the backhaul
network. However, [12], [13] do not consider any renewable
sources of energy to power the FiWi network components.
In [14], the authors proposed a 5G new radio (NR) based
FiWi network which is powered by means of a power over
fiber system. Specifically, it operates a low-power 5G NR
remote antenna unit, composed of a photodetector and radio-
frequency (RF) amplifier, by means of a power over fiber
system. The authors were able to achieve a power transmission
efficiency of 23.5%. A two layer Stackelberg game based
offloading scheme is proposed in [15] to allocate the channel
bandwidth as well as to make offloading decisions. Further,



TABLE I
SUMMARY OF RELATED WORKS ON SOLAR PREDICTION

Reference Algorithm used Contributions

[5] Markov Chain model Forecasted solar irradiance by investigating the use of the
Markov chain model for a short-term period

[6] Markov switching model
Markov regime switching model performs better than solar
radiance forecasting models, such as the persistence model,

neural network, GPR, and auto regression model

[7] Artificial NN Artificial NN model to produce solar power forecasts
compared to linear regression and persistence models

[8] Combination of KBNN and MLP Proposed model had a 64.5% more accuracy compared to
existing models

[9] Long Short-Term Memory Used local whether forecast and a pretrained LSTM model
to predict next-day solar irradiance

the authors also proposed energy efficiency benchmarks from
both system-wide and user-side perspectives. However, the
authors modified the standard energy consumption protocol to
conserve the energy and did not use any renewable sources
of energy to operate the network components. In [1], the
authors used a combination of renewable energy sources such
as solar as well as other non-renewable sources such as
batteries for FiWi network. Specifically, an energy resource
allocation approach to operate ONU is proposed for on-grid
as well as off-grid scenarios1. However, they did not use any
ML based energy resource allocation to allocate the energy
resources dynamically based on the availability of solar power.
In [16], the authors formulated a two-stage photovoltaic (PV)
planning framework for distribution grids using a game theory
approach. First, the authors computed the optimal installation
capacity of PV panels, then they proposed a model to optimally
allocate PV panels among the solar producers and consumers
to minimize the active power flow in the system. However, the
authors did not use any other renewable source such as wind,
nor did they employ any ML based technique for allocating the
PV panels. The authors in [17] used a cooperative game theory
scheme to investigate the performance of shared PV panel
system among community of households. In [18], a power
allocation scheme for battery cluster switching is proposed
to alleviate overcharging and deep-charging of batteries as
well as to minimize the battery power loss. However, the
authors did not consider solar and wind energy. The authors
in [19] developed a novel statistical model of the harvested
energy from renewable energy sources considering harvest-
store-consume (HSC) architecture. They derived the closed-
form expressions for the density functions and moments of
the harvested solar and wind power using clouds occlusion,
wind speed, etc. Further, in [20], the authors reviewed the
performance of miniatured wind energy harvesters (MWEHs).
A miniature wind energy harvester design which works at low
wind speed with a wide operational wind speed range can
significantly improve the operation cycle of many systems and
can result in more robust Internet of Things (IoT) applications.
However, in order to capture the day-to-day fluctuation in wind

1The scenarios where grid energy is utilized to power the network compo-
nents are called on-grid scenario, whereas the scenarios where grid energy is
not utilized are called off-grid scenarios.

and solar power, the practical values for parameters such as
cloud occlusion are required. Moreover, unlike solar power, the
wind power do not follow any specific hourly pattern. Thus, it
is difficult to consider any specific statistical model for wind
power.

The accurate predictions about the availability of the green
sources of energy will facilitate to quantify their future avail-
ability. In [5], the authors proposed the Markov Chain model
to forecast the hourly day-ahead solar irradiance for Jodhpur,
India. The authors achieved a maximum solar irradiance root
mean square error (RMSE) of 2200.818 W/m2 for October
2014 and maximum mean absolute error (MAE) of 90.985
W/m2 for July 2014. A typical Markov chain model to
quantify the solar prediction for bi-hourly data is proposed
in [6]. The performance in terms of mean square error (MSE),
MAE, RMSE, standard deviation error (SDE) is compared
with four types of prediction model, namely, persistent, au-
toregressive, Gaussian process regression (GPR) model, and
neural network (NN) [6]. The results demonstrated that using
Markov switching, the authors were able to get the best
performance, followed by NN, whereas the performance of
GPR is the worst. Using artificial NN (ANN), the authors in [7]
compared the performance of hourly solar power forecasting
with multiple layer regression and persistence method. The
authors showed that depending on the weather conditions,
the forecast might vary. For instance, clear sky hours have
better forecast compared to cloudy hours. The authors in [8]
proposed a model composed of knowledge based NN (KBNN)
and multilayer perceptron (MLP) for forecasting solar power.
The results demonstrated that the model is reliable even when
the training data is insufficient. Moreover, the model is shown
to have an accuracy improvement of 65.4% compared to
existing methods. In [9], the authors used long short-term
memory (LSTM) model for solar energy prediction for Korea.
The authors used weather forecast statistics such as temper-
ature, sky cover, humidity, etc., to forecast solar irradiance.
Moreover, they showed that the LSTM model had the RMSE
coefficient of 12%. Table I summarizes the related works on
solar power predictions.



B. Contributions

Motivated by the above, we propose a machine learning
(ML) based joint energy resource allocation framework to
allocate batteries and photovoltaic (PV) panels for an off-
grid green FiWi network. As the solar power profile generally
differs for each day, thus energy resource allocation needs to
be done such that the resources are neither under-utilized nor
over-utilized. In order to allocate the energy resources at any
specific location, it is essential to predict the solar power at
that location. The existing resource allocation algorithms do
not take into account the dynamic nature of energy resource
allocation based on day-to-day solar power availability. In
order to do so, we propose an ML based energy resource
allocation framework wherein for predicting the solar power
we have used random forest based ensemble learning. The
FiWi network consists of 10-Gigabit-capable passive optical
network (XG-PON) with WiFi frontend. The ONU and access
point (AP) are co-located and are collectively called ONU-
AP [21]. The ONU-AP is powered using solar and wind
energy along with batteries. In order to allocate the PV panels
and batteries to operate ONU-AP, a joint energy resource
allocation problem is formulated. The joint energy resource
allocation problem is divided into two sub-problems. These
sub-problems are then solved alternatively to find the required
minimum energy resource allocation. This paper compares
the proposed ML based energy resource allocation (MERA)
approach with the traditional approach such as a) Max energy
resource allocation, b) Min energy resource allocation, c)
Median energy resource requirement, and d) Outage threshold
based energy resource allocation.

Some of the major contributions of the proposed work are
summarized as follows:

• We introduce a system parameter α, that indicates the
ratio between the solar power supplied to operate ONU-
AP and the solar power supplied to charge the batteries.
The results are shown by varying α and its impact on the
energy resource allocation and battery lifetime.

• Based on the solar power available to ONU-AP, we
propose a joint optimization framework to minimize the
number of batteries and PV panels required to operate
ONU-AP for an off-grid scenario, where ONU-AP is
powered using solar power, wind power, and batteries.

• To solve the non-linear joint optimization problem, we
divide it into two sub-problems: 1) Minimum PV panel
allocation for a fixed number of batteries and 2) Minimum
battery allocation for a fixed number of PV panels. Each
sub-problem is then solved using proposed algorithms:
a) MinPVAlloc: to calculate the minimum PV panel
allocation for a fixed number of batteries and b) Min-
BatAlloc: to calculate the minimum battery allocation for
a fixed number of PV panels. These algorithms are then
solved alternatively to find the optimal energy resource
allocation for ONU-AP.

• We propose ML based energy resource allocation ap-
proach (MERA) that uses hourly solar irradiance forecast

ONU AP ONU AP ONU AP

OLT

Splitter

Internet
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Fig. 1. System architecture for FiWi network

to dynamically allocate the energy resource required to
operate ONU-AP. In order to forecast the solar irradiance
profile, we use random forest based ensemble learning.

• We compare the performance of proposed approach,
MERA with the traditional approaches such as a) Max
energy resource allocation, b) Min energy resource al-
location, c) Median energy resource requirement, and
d) Outage threshold based energy resource allocation.
Further, we analyze the performance of MERA with the
traditional approaches in terms of battery lifetime, outage,
CO2 emissions, and cost.

The results demonstrate that with the usage of MERA, the sys-
tem performance in terms of outage, cost, and CO2 emissions
improves. Specifically, due to dynamic resource allocation, we
are able to get an outage performance lower than the Max
energy resource allocation, which is the based on the worst
24-hour solar power profile of the year. Moreover, there is
also a reduction in cost and CO2 emissions using MERA as
compared to Max approach. Furthermore, it is shown that with
the usage of green energy sources, the CO2 emissions have
also significantly reduced by 3.8 metric tonnes compared to
traditional grid power supply over a period of one year.

The rest of the paper is organized as follows. Section II
presents the system model for the proposed FiWi network.
The solar irradiance prediction model is presented in Section
III. The joint optimization problem formulation is discussed in
Section IV. The proposed framework for joint energy resource
allocation is presented in Section V. The performance of
proposed approach is evaluated in Section VI. Finally, Section
VII concludes the paper.

Notations: The vector is denoted as boldface as x. The set
of positive real integers is denoted by Z.

II. SYSTEM MODEL

In this section, we discuss the system model and related
parameters for the considered green FiWi network.
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Fig. 2. Power supply model of ONU-AP.

A. Network Model

The system model for the considered FiWi network is shown
in Fig. 1. We consider a FiWi network consisting of an
XG-PON as the backhaul network and WiFi as the fronthaul
network. XG-PON network consists of an optical line terminal
(OLT) at the central office. During uplink communication, the
user sends data to AP which further sends it to ONU. The
ONU and AP are co-located and are commonly known as
ONU-AP [21]. The traffic from the ONUs is then combined
using a passive splitter and sent to the OLT. The ONU-AP
is powered using solar panels, batteries, and wind turbines as
evident from Fig. 2. It is assumed that the solar panels along
with powering ONU-APs are also responsible for charging
the batteries whereas the wind turbines are only used to power
ONU-APs. This is due to the fact that wind power is generally
erratic and therefore, it is not used to power the battery. In
Fig. 2, it can be seen that PS is the solar power generated by
ONU-AP. α is the fraction of solar power supplied to ONU-AP,
i.e., the solar power supplied to ONU-AP is denoted as αPS ,
where 0 ≤ α ≤ 1. The remaining fraction of solar power,
(1 − α)PS is supplied to the batteries. PDIS is the power
supplied by the batteries to power ONU-AP. The batteries
power ONU-AP for operation during non-solar hours or the
hours where the available solar power is less than the power
requirement of ONU-AP.

B. Throughput Model

Depending on the time of the day, the density of the
users also varies, for instance, the density of users is high
during the peak traffic hours and low during the night hours.
In [22], the authors provided statistical modelling of time vary-
ing throughput per cell and the distribution of instantaneous
throughput per cell over different cells based on throughput
measurements from a real-world large-scale urban cellular
network. The throughput profile for the users follows an
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Fig. 3. Throughput and power consumption profile of ONU-AP.

exponential probability density function with rate parameter,
r given by Gaussian mixture model (GMM) as [22]:

r =

k∑
i=1

aie

(
−
(

t−∆i
λi

)2
)
, (1)

where ai is the amplitude of the ith peak, t is the time (in
hours) of the day, λi relates to the peak width of the ith

peak, k = 7 represents the number of peaks in the data
series, and ∆i is the location of the centroid of the ith

peak [22]. The curve fitting parameters have the values as: a =
[3.263 × 106, 0.0781, 0.6616, 0.1097, 0.2584, 0.1822, 0.1652],
∆ = [75.273, 3.85, 4.971, 2.996, 1.868, 3.221,−2.871], and
λ = [12.56, 0.4829, 1.77, 0.862, 1.543, 5.972, 84] [22].

The aggregated throughput profile of all the users connected
to ONU-AP is shown in Fig. 3 [1]. It is evident that at night
(3:00-7:00 hrs), as the number of users accessing the network
is low, the throughput of the network is also low, whereas
for the peak traffic hours (17:00-19:00 hrs), a peak in the
throughput profile can be observed.

C. Power Consumption Model of ONU-AP

The power consumption profile for ONU-AP is presented in
this subsection. The sum of the power consumption of ONU
and AP is the power consumption of ONU-AP. Further, the
power consumption of the network devices depends on the
throughput profile of the network. Fig. 3 shows the throughput
as well as power consumption profile of ONU-AP. Depending
on the state of ONU, the power consumption of ONU varies.
According to [23], ONU can be in the following states:

1) Active held state: In this state ONU is awake and
consumes full power.

2) Asleep state: In this state both transmitter and receiver
of ONU are turned off.

3) Sleep aware state: In this state ONU checks whether
there is any traffic in the network or whether it can go
to asleep state.



4) Active free state: The ONU at this stage decides whether
it can go to a low power consumption state based on the
downstream traffic.

5) Listen state: In this state the transmitter is off but the
receiver is on.

The power consumption model for wireless IEEE 802.11
devices also depends on upstream and downstream data rate,
i.e., δu and δd, respectively. The power consumption for IEEE
WiFi APs is shown in [24]. Let, Pas, Pah, Pda, Pls, Psa, and
Paf be the power consumption of different states of ONU
denoted as active free, doze aware, listen, asleep, sleep aware,
and active held, respectively. The power consumption of ONU-
AP is given as [23] [24]:

PONU−AP =γsaPsa + γasPas + γahPah

+ γdaPda + γlsPls + γafPaf + Pidle

+ PTxTTx + PRxTRx + γgxδd + γxrδu, (2)

where γas, γah, γda, γls, γsa, and γaf are the stationary
probabilities for each state. Moreover, γsa + γas + γah +
γda + γls + γaf = 1. Taf , Tda, Tls, Tas, Tsa, and Tah are the
time periods of active free, doze aware, listen, asleep, sleep
aware, and active held states of ONU, respectively. Pidle is the
power consumption of AP in the idle mode, PRx and PTx are
the reception and transmission power, respectively. TTx and
TRx is the transmission and reception airtime percentage, the
reception cross-factor is given by γxr, and the cross-factor of
the packets generated by the application is denoted by γgx.
In this paper, we consider δu = δd, i.e., symmetric data rate
scenario for upstream and downstream scenario [25], [26]. The
burst size for the traffic is considered to be 450 bytes [1]. The
values of PRx = 0.24 W , Pidle = 3.68 W , PTx = 0.4 W , and
γxr = γgx = 0.93× 10−3 [24], and TRx = TTx = 50% [27].

D. Solar Power Model

The solar irradiance profile for different cities can
be obtained from National Renewable Energy Laboratory
(NREL) [28]. The solar irradiance is then converted to the
solar power profile as follows [29]:

PS = IηA
Tc

100
(To − 25), (3)

where I is the irradiance profile discussed later, η = 20.55%
is the efficiency of solar panel, A is the area of the solar
panel, Tc = −1.039 is the temperature coefficient, To is the
temperature [29].

E. Wind Power Model

The speed of the wind depends on the location of installation
and the wind turbine’s height. Based on the air density and
wind speed, the wind power generated by the wind turbine is
given by [30]:

PW = 0.5ρπR2v2wCpmax, (4)

where R is blade radius of wind machine, ρ is air density,
Cpmax is the maximum rotor power coefficient, and vw is
wind speed. For simulations, we consider a 50 m height of

the wind turbine, R = 0.5 m, ρ = 1.225 kg/m3, and Cpmax =
0.042 [31].

F. Battery Model

Batteries are one of the main energy sources required to
power the network components when the grid power supply
and renewable energy sources are not available. Lead-acid
batteries are cost-effective and are one of the popular types
of batteries [32]. Moreover, unlike other batteries sources,
the partial state of charge (SoC) has minimal effect on the
lifetime of the lead-acid batteries [32]. Let us assume the
capacity for each battery is PBcap . The state of charge of the
battery is updated whenever the batteries are discharged or
charged. If the SoC of the batteries reaches PBcap , the batteries
cannot be charged further. Further, a depth of discharge (DoD)
value is generally predefined by the operators that specifies the
battery’s minimum state of charge. The battery lifetime can be
enhanced by maintaining the DoD, i.e., avoid deep discharge.
In this paper, a series configuration of batteries is considered;
thus, if we consider a deployment of N batteries with battery
capacity PBcap then, the overall capacity of the N batteries will
be NPBcap [1].

III. SOLAR IRRADIANCE PREDICTION USING ML

This section of the paper focuses on predicting global
horizontal irradiance (GHI). GHI is defined as the total solar
radiation incident on a horizontal surface and is used in (3).
This can be calculated by using [29] as

I = DN cos (θ) +DH , (5)

where, DN is direct normal irradiation (DNI) and is defined
as the amount of solar radiation received per unit area by a
surface that is held perpendicular (or normal) to the rays and
DH is diffuse horizontal irradiance (DHI), i.e., solar radiation
scattered by clouds and particles in the atmosphere. These
radiation comes equally from all directions and θ is the angle
of incidence of the beam.

A. Building Model and Training

We propose utilizing an ensemble learning approach for
GHI prediction which may be utilized to build a more ef-
ficient energy resource allocation framework to power the
FiWi network components. Ensemble learning is defined as a
process by which multiple models are strategically generated
and combined to solve a particular computational intelligence
problem [33]. Ensemble learning is primarily used to get better
predictive accuracy than achieved by each individual compo-
nent model. The models that we chose to assess for the purpose
of GHI prediction are: (a) Random Forest, (b) MLP, (c) CNN,
and (d) Markov processes. The results for average predictions
for 2019 is shown in Table II, where it can be observed that
experimenting on dataset utilized for building the model for
this work also indicated the random forest model to be most
accurate, whereas the performance of Markov process is least
accurate. Further, in terms of computational complexity, the
random forest is a probabilistic method which builds multiple



decision trees with different subsets of the given feature set
and finally aggregates the result from each decision tree to
obtain the final result. Predicting a new data point using a
trained random forest will execute operations at every level of
each tree, resulting in O(ntreek) run time complexity, where
ntree denotes the number of trees and k is the maximum depth
of a tree within the forest [34]. A Multi-Layer Perceptron
(MLP) is a neural network which contains an input and output
layer with hidden layers in between. The resultant prediction
complexity thus depends highly on the architecture of the
network (number of hidden layers, number of features and
the activation function). MLP prediction uses feature set of
new data point and conduct matrix multiplications. Matrix
multiplication of Matrixi,j and Matrixj,k in its most naı̈ve
form has the complexity of O(i ∗ j ∗ k). Additionally, the
output will undergo an activation function which will conduct
further operations on each layer. Since this operation has to
be done every time the process moves from one layer to
another, this will run n − 1 times where, n is the number
of layers in the network. This complexity can be reduced
via (a) utilizing different matrix multiplication algorithms
and (b) parallelizing the process. Similarly, a CNN is an
evolved version of a basic neural network that adds multiple
convolution layers applied to the feature set to simplify and
model an existing feature set. This is performed by identifying
convolutional filters that are applied to the data using multiple
dot products which are O(v) in complexity where v is the
length of the vector being multiplied. This is followed by
fully connected layers similar to a traditional neural network
performing the same operations as detailed. Lastly, a Markov
decision process is also a stochastic process which utilizes
state transitions annotated with probabilities to identify the
probability of an event occurring. Assigning a complexity is
challenging to a Markov process due to its stochastic nature
as well as the desired termination criteria. In addition to this,
for the purposes of our experiment, the utilization of Markov
processes delivered fairly inaccurate results (as can be seen in
Table II) and thus are not apt for prediction problems of this
nature.

TABLE II
SOLAR IRRADIANCE PREDICTION FOR THE YEAR 2019

Model Accuracy
Random forest 87.1%

Deep learning (MLP) 50.49%
Deep learning(CNN) 58.33%

Markov process 50%

A random forest regression ensemble learning model, con-
sisting of multiple decision trees is selected for GHI prediction
in this work, which along with all the advantages of ensemble
learning additionally is known to combat overfitting, which
individual decision trees are prone to, and thus providing
strong predictive performance [35]. This type of model has
previously been utilized for prediction of solar irradiance
profile and is found to be most accurate when compared to

other regression models, namely support vector machine and
linear regression [36].

In random forest, each decision tree is build using a random
sample of data point drawn without replacement [37]. Decision
trees learn how to best split the data set into smaller and
smaller subsets to predict the target value [37]. There are
various algorithms to implement a decision tree, however, we
have used classification and regression trees (CART) algorithm
as it supports numerical target variables or regressions [38].
CART constructs binary trees using feature and a threshold
that yields the largest information gain (IG) and minimum
MSE at each node. MSE is computed as follows [39]:

MSE =
1

N

∑
(xa − xp)

2, (6)

where xa is the actual value, xp is the predicted value, and N
denotes the total samples.

The predictions from all the decision trees are pooled to
make the final prediction, i.e., the mean of all the predictions
is calculated to get the output of random forest regression.

B. Data Set

The data set containing measured irradiance data as well as
features such as year, month, day, hour, minute, temperature,
dew point, DHI, DNI, GHI, ozone, relative humidity, solar
zenith angle, surface albedo, pressure, precipitable water,
and wind speed from the years 2001-2014 and 2017-2019
from [28] is available for the purposes of predictive model
building. After feature engineering, we used the following
features of the data set: day, hour, temperature, dew point,
relative humidity, solar zenith angle, pressure, and precipitable
water. The model is trained on the training set containing data
available from years 2001-2018 and tested on the data for
20192. The irradiance data for 2015 and 2016 is not available
at NREL [28], therefore we used the data for other years.
Fig. 4 shows the solar irradiance profile for New Delhi for
a set of 7 days of the prediction year 2019. It can be seen
that the maximum irradiance is 620 W/m2. Further, it is also
evident that the day-to-day correlation of solar irradiance is
insignificant.

For building ML model to predict the GHI value, we
segregate the yearly data into 12 parts, one for each month
of the year. For each month, the model is trained with the
same month of the prior years, i.e., from 2001-2014 and 2017-
2018. For instance, if the data for Jan-2019 is to be predicted,
the model is trained with January 2001-2014 and 2017-2018.
Further, as the solar zenith angle has the maximum information
gain of 0.482, hence it is chosen as the first attribute for the
split. The number of estimators in the GHI predictive model
is 1000, i.e., there are 1000 trees in each forest, and the
prediction value is calculated based on the mean of the outputs
of these estimators.

2As proof of concept we are illustrating the performance for New Delhi,
India, however the results will be applicable to other cities as well.



20 40 60 80 100 120 140 160

Time (hrs)

0

100

200

300

400

500

600

700
S

o
la

r 
ir
ra

d
ia

n
c
e
 (

W
/m

2
)

Fig. 4. GHI for a set of 7 days of 2019 for New Delhi.

C. Testing

To evaluate the performance of solar irradiance prediction,
we use the following performance metrics: a) R2 score, b)
RMSE, and c) %RMSE. These metrics are described in detail
below:

1) R2 score: R2 score is a statistical measure in a regression
model that determines the proportion of variance of the
dependent variable, where the dependent variable is defined
by an independent variable. In other words, R2 shows how
well the data fits into the regression model, i.e., the goodness
of fit. R2 is calculated as [40]:

R2
score = 1−

(∑
(xa − xp)

2
)
/
(∑

(xa − xmean)
2
)
, (7)

where xa is ground truth, xp is predicted value and xmean is
mean of all the actual values.

2) RMSE: Root Mean Squared Error is the measure of
differences between values predicted by the model. In other
words, it is standard deviation of the prediction errors and is
calculated by [40]:

RMSE =

√
1

N
(xa − xp)2. (8)

3) %RMSE: It refers to the percentage RMSE and is
calculated as [39]:

%RMSE =
Calculated RMSE

Maximum value of prediction
× 100. (9)

IV. PROBLEM FORMULATION

In this section, a joint energy resource optimization problem
to minimize the number of batteries as well as the number of
PV panels required to operate ONU-AP is formulated. It is
worthwhile to mention that the number of batteries depends
on the number of PV panels and vice-versa. This is due to
the fact that power of the PV panels is required to charge the
batteries completely at T th hour. Similarly, the number of the
batteries depends on the power required by ONU-AP during

the non-solar hours. The optimization problem thus formulated
is given as:

(P1) min
NP ,NB ,B1

CHG

CPNP + CBNB , (10)

s.t. βPBcap ≤ B1
CHG(t) ≤ PBcap , ∀ t ∈ [0, 23], (11)

PBcap ≤ B1
CHG(T ), (12)

NPP
1
S(t) +NBB

1
CHG(t) ≥ PO(t), ∀ t ∈ [0, 23]. (13)

where NP and NB is the number of PV panels and batteries,
respectively, and NP , NB ∈ Z. CP and CB is the cost of PV
panels and batteries, respectively. PBcap is the battery capacity
of the single battery, β is the depth of discharge value of the
battery, B1

CHG(t) is the charge of a single battery at tth hour,
P 1
S(t) is the power of a solar panel at tth hour, and PO(t) is the

power consumption of ONU-AP at tth hour. The solar power
P 1
S(t) is calculated using (3), where the irradiance profile

is calculated using ML based prediction. The optimization
problem (10) minimizes the cost of required number of PV
panels and batteries, i.e., CPNP and CBNB , respectively by
finding the optimal values of number of PV panels (NP ) and
number of batteries (NB). The constraint in (11) depicts that
the charge of each battery at tth hour, B1

CHG(t) does not exceed
PBcap and does not discharge below the depth of discharge
βPBcap , i.e., PBcap ∈ [βPBcap , PBcap ], ∀ t ∈ [0, 23]. The second
constraint in (12) denotes that the battery should be completely
charged at the T th hour. The power of ONU-AP should be
fulfilled at each hour, i.e., the sum of power of the PV panel
and batteries, NP × P 1

S(t) + NB × B1
CHG(t) must fulfill the

power requirement of ONU-AP, PO(t) ∀ t ∈ [0, 23].
As evident in (10), the cost of a PV panel and battery, is

given by, CP and CB , respectively. The cost of PV panel
includes the asset cost, CPA

and operation and management
(O&M) cost of the PV panel, CPO

[41]:

CP = CPA
+ CPO

. (14)

Similar to the cost of PV panel, the cost of a battery is
calculated as [41]

CB = CBA
(NR + 1) + CBO

, (15)

where CBA
is‘ the asset cost of the battery, CBO

is the
operation and management cost of a battery, NR is the number
of times the batteries are replaced within a system lifetime
duration.

It is evident from (10) that the objective function is a linear
function of optimization variables NP and NB . However,
the constraint in (13) is quadratic in nature as it contains
multiplication of two unknown variables NB and B1

CHG(t).
Hence, the optimization problem (P1) is a quadratic constraint
linear programming problem (QCLP) [42]. This can be solved
by sub-dividing the above problem into two sub-problems and
solve them alternatively to get the final energy resource alloca-
tion. In [43], the authors provided an efficient algorithm based
on an alternating solution scheme which alternates between
solving a deterministic alternating current (AC) optimal power
flow problem and assessing the impact of uncertainty. The



authors claimed that the flexibility of the alternating scheme
enables not only scalable implementations, but also alternating
chance-constraint reformulations. The authors compared the
solutions obtained when solving the AC chance constrained
optimal power flow either as a one-shot optimization prob-
lem and using an alternating solution algorithm. The results
showed that the alternating algorithm provides optimal results.
The authors in [44] proposed an alternating approach of
using Pontryagin’s minimum principle, namely alt-PMP for
developing optimal energy management strategies for battery/-
supercapacitor hybrid energy storage systems. The authors
compared the proposed solution with dynamic programming
(DP) in terms of both computational efficiency and accuracy.
The proposed alternating method performs superior to DP as
numerical computations are required only for boundary con-
ditions and for the constraints. The authors further mentioned
that the proposed method can provide an effective tool for
energy management strategy developers to use as an optimal
benchmark to evaluate their real-time sub-optimal strategies.
Thus, we have used alternating approach where each sub-
problem is then solved alternatively to calculate the required
energy resources allocation. The two sub-problem are given
as follows:

A. Minimum PV panel allocation for a fixed number of
batteries (MinPVAlloc)

This subsection proposes a PV panel allocation algorithm
to allocate minimum number of PV panels required to operate
ONU-AP for a fixed number of batteries. Let the fixed number
of batteries be NBF

, then the minimum number of PV panels
required to charge the batteries and operate ONU-AP is
calculated as shown in Algorithm 1.

Initialize the number of PV panels to NP . As we know
that the batteries should be entirely charged at T th hour, thus
we iterate the algorithm till BCHG(T + 24) is equal to the
capacity of NBF

batteries, PN
Bcap

= NBF
×PBcap . At each hour,

t, calculate the amount of solar power allocated to ONU-AP,
PSO(t) is given by:

PSO(t) = min{PO(t), αPS(t)}, ∀t ∈ [0, 23], (16)

where PO(t) is the power consumption of ONU-AP and
αPS(t) is the fraction of solar power supplied to ONU-AP. As
we know that the battery is charged by the fraction of solar
power supplied to the battery, (1 − α)PS(t) and the battery
power at each hour is given by:

BCHG(t) = min{BCHG(t) + (1− α)PS(t), P
N
Bcap

}. (17)

If the solar power supplied to ONU-AP (αPS(t)) at tth hour
is less than the power required by ONU-AP (PO(t)) then,
the power will be consumed from the batteries. The power
consumed from the batteries is given by:

PDIS(t) = max{PO(t)− PSO(t), 0}. (18)

In case the fraction of power supplied to ONU-AP is higher
than the solar power required by ONU-AP, then the excess
solar power at ONU-AP is calculated as:

PEX(t) = max{αPS(t)− PSO(t), 0}. (19)

Further, at the beginning of next hour, we calculate the state
of the battery using PEX(t), PDIS(t), BCHG(t).

BCHG(t+ 1) ={
βPN

Bcap
, BCHG(t)− PDIS(t) + PEX(t) < βPN

Bcap

min{BCHG(t)− PDIS(t) + PEX(t), P
N
Bcap

}, otherwise

(20)

Finally, the minimum number of PV panels is calculated based
on the number of PV panels required to charge the fixed
number of batteries at T th hour. The complexity of Algorithm
1 is calculated as: O(24×CountPV ) = O(CountPV ), where
CountPV is the minimum number of batteries required to
power ONU-AP and O(.) is the Big O notation that gives an
asymptotic upper bound on a function as defined in [45].

Algorithm 1 MinPVAlloc Algorithm
Input:
NBF

= Fixed number of batteries
Initialize:
BCHG(T ) = NBF

× PBcap

NP = 1
PN
Bcap

= NBF
×PBcap

1: while BCHG(T + 24) = PN
Bcap

do
2: for t = T to T + 23 do
3: PSO(t) = min{PO(t), αPS(t)}
4: BCHG = min{BCHG(t) + (1− α)PS(t), P

N
Bcap

}
5: PDIS(t) = max{PO(t)− PSO(t), 0}
6: PEX(t) = max{αPS(t)− PSO(t), 0}
7: if BCHG(t)− PDIS(t) + PEX(t) < βPN

Bcap
then

8: BCHG(t+ 1) = βPN
Bcap

9: else
10: BCHG(t+ 1) =

min{BCHG(t)− PDIS(t) + PEX(t), P
N
Bcap

}
11: end if
12: end for
13: NP = NP + 1
14: end while
Output: NP is the minimum PV panels allocated to ONU-AP
for NBF

batteries.

B. Minimum battery allocation for a fixed number of PV
panels (MinBatAlloc)

In Algorithm 2, we propose a battery allocation algorithm to
allocate the minimum number of batteries required to operate
ONU-AP. The input to the algorithm is a fixed number of PV
panels, NPF

. The minimum number of batteries required to
operate ONU-AP during the non-solar hours is calculated as
follows: Let us initialize the number of batteries to NB = 1.
For each iteration, the value of NB is increased by 1 till



Algorithm 2 MinBatAlloc Algorithm
Input:
NPF

= Fixed number of PV panels
Initialize:
BCHG(T ) = PBcap

Pout = 1× 24 vector with all values = 1
NB = 1
PM
S = NPF

× P 1
S

1: while
∑23

t=0 Pout(t) = 0 do
2: for t = T to T + 23 do
3: PSO(t) = min{PO(t), αPS(t)}
4: BCHG = min{BCHG(t) + (1− α)PS(t), PBcap}
5: PDIS(t) = max{PO(t)− PSO(t), 0}
6: PEX(t) = max{αPS(t)− PSO(t), 0}
7: if BCHG(t− 1)− PDIS(t) + PEX(t) < βPBcap then
8: Pa(t) = 1
9: BCHG(t+ 1) = βPBcap

10: else
11: Pa(t) = 0
12: BCHG(t+ 1) =

min{BCHG(t)− PDIS(t) + PEX(t), PBcap}
13: end if
14: end for
15: NB = NB + 1
16: end while
Output: NB is the minimum batteriesallocated to ONU-AP
for NPF

PV panels.

the power outage, i.e., the amount of time the power is
not available to ONU-AP is equal to zero. The solar power
allocated to ONU-AP is given as follows:

PSO(t) = min{PO(t), αPS(t)}, (21)

where PO(t) is the power consumption of ONU-AP and
αPS(t) is the fraction of solar power supplied to ONU-AP. The
fraction of solar power supplied to the batteries (1− α)PS(t)
will charge the batteries and the battery power at each hour is
given by BCHG(t):

BCHG(t) = min{BCHG(t) + (1− α)PS(t), PBcap}. (22)

Further, if the solar power available to ONU-AP is insufficient
to operate ONU-AP, then the power will be consumed from
the batteries. The power consumed from the batteries is given
by:

PDIS(t) = max{PO(t)− PSO(t), 0}. (23)

Moreover, the excess solar at ONU-AP, that is, the power
remaining after power requirement of ONU-AP is satisfied
is supplied to charge the batteries. This excess power is given
as:

PEX(t) = max{αPS(t)− PSO(t), 0}. (24)

Further, we calculate the battery state at the beginning of next
hour using BCHG(t+ 1), which is given by:

BCHG(t+ 1) ={
βPN

Bcap
, BCHG(t)− PDIS(t) + PEX(t) < βPN

Bcap

min{BCHG(t)− PDIS(t) + PEX(t), P
N
Bcap

}, otherwise

(25)

Further, for the hours where the charge in the batteries goes
below the depth of discharge value, βPBcap , we calculate the
power outage which is given by:

Pout(t) =

{
0, BCHG(t)− PDIS(t) + PEX(t) < βPBcap

1, otherwise.
(26)

Finally, the minimum the number of batteries for which∑23
t=0 Pout(t) = 0 can be computed. The complexity of Algo-

rithm 2 can be calculated as O(24×CountB) = O(CountB).

V. PERFORMANCE EVALUATION

In order to validate the performance of the proposed MERA,
we compare the following approaches of energy resource
allocation:

1) Maximum energy resource allocation (Max approach):
In this approach, the energy resource allocation is cal-
culated based on the worst solar power profile, i.e.,
lowest 24-hour solar power profile of the year. In this
approach, the energy resources allocated are generally
under-utilized, i.e., the energy resources allocated are
much higher compared to the required energy resources.
However, using this approach the probability of power
outage is low.

2) Minimum energy resource allocation (Min approach): In
this approach, the energy resource allocation is calcu-
lated based on the best solar power profile, i.e., highest
24-hour solar power profile of the year. For instance,
in [46], the authors used peak power to optimally
place PV panels in distribution network. Generally,
this approach allocates minimum energy resources, and
therefore, system might not be able to operate the device
at all hours and suffer from severe power outage.

3) Median energy resource allocation (Median approach):
In this approach, the energy resource allocation is cal-
culated based on the median 24-hour solar power profile
of the year, i.e., the median of all 365 days of the year.

4) Outage threshold based energy resource allocation: If the
tolerable power outage limit predefined by the operator
as Γ% outage per year then, based on Γ% outage,
the energy resources required to operate ONU-AP are
calculated. We have considered the outage threshold
Γ = 2% which has been suggested in [47].

5) Proposed ML based dynamic energy resource allocation
(MERA): In this approach, dynamic energy resource al-
location is faciltated based on the solar power profile for
each day. As we know that the number of batteries (PV
panels) required by ONU-AP vary for each day based
on the solar power profile of each day; therefore, the
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Fig. 5. Actual vs. Predicted solar power profile for New Delhi for first six
days of a) January 2019 and b) February 2019.

energy resources should be dynamically allocated based
on ONU-AP’s requirement and solar power availability.
The advantage of this approach is that the unutilized
batteries will not be charged or discharged during the
day, and hence, it will affect the performance of the
system, which is discussed in detail in Section VI.

VI. RESULTS

The performance of the proposed joint energy resource
allocation framework for the FiWi network is shown in this
section. As mentioned before, in order to allocate the required
number of batteries and PV panels to operate ONU-AP a
joint energy resource allocation is used. Further, the proposed
approach is compared with the other approaches of energy
resource optimization such as Max, Min, Median, and outage
threshold approach assuming both with wind and without
wind scenarios. Moreover, the time at which the batteries are
entirely charged is considered to be T = 16:00 hours. The
DoD value for the battery, β is considered to be 0.7 [1]. The
capacity of the single PV panel and battery is considered to
be 5W [48], [49].

TABLE III
R2 SCORES FOR DIFFERENT MONTHS

Month R2 score Month R2 score
January 91.00% July 71.00%
Feburary 83.15% August 79.71%
March 86.53% September 84.20%
April 93.24% October 95.00%
May 93.96% November 85.07%
June 84.64% December 65.00%

Year 84.375%

A. Efficiency of machine learning predictions

The solar irradiance predictions for New Delhi for January
and February 2019 are analyzed in this section. Fig. 5 shows
the predictions of GHI for New Delhi for the first six days of
January and Feburary of 2019. It can be seen for each month
the prediction is close to the actual values of solar irradiance.
As mentioned before, in order to validate the predictions we
calculate R2 score, RMSE and % RMSE for the predicted solar
irradiance values. The R2 scores are presented in Table III. It
can be seen that the average R2 score for the year is 84.375%.
For October, the R2 score is the highest, i.e., the prediction
for October is most accurate. However, for the months of

TABLE IV
R2 SCORES FOR DIFFERENT MONTHS OF 2018

Month R2 score Month R2

score
January 83.76% July 77.57%

February 91.87% August 82.81%
March 91.43% September 73.19%
April 92.35% October 96.28%
May 92.46% November 95.18%
June 85.78% December 94.00%

Year 84.375%

TABLE V
RMSE SCORES FOR DIFFERENT MONTHS OF 2019

Month RMSE % RMSE Month RMSE % RMSE
January 82.71 9.19 July 104.79 11.64
Feburary 92.54 10.28 August 96.42 10.71
March 87.00 9.67 September 85.97 9.55
April 81.87 9.09 October 70.97 7.8
May 80.26 8.91 November 79.08 8.78
June 93.74 10.41 December 150.74 16.74

Year 92.17% 10.23%

July, August, and December, the prediction is least accurate
as R2 score is low3. In order to find out whether the trend for
these months is similar to other years, we predicted the solar
irradiance for 2018 by using 2017’s data as the testing set. The
results for R2 score for 2018 are summarized in Table IV.
GHI predictions for July and August continued to be least
accurate when predicting for the year 2018 by training on data
before the year 2017, however the model is able to predict
GHI for the month of December as successfully as the other
months [R2 = 94.00%] indicating that perhaps the month of
December in 2019 is anomalous.

The RMSE values for different months of 2019 are shown
in Table V. It can be observed that RMSE for October is the
lowest, i.e., 7.8%, which is also aligned with the R2 score for
October is the highest. Further, for December, the RMSE is
the highest, i.e., 150.74. Moreover, the average %RMSE for
2019 is 10.23%.

B. Energy resource allocation

In this subsection, we analyze the energy resources required
to operate ONU-AP. The joint optimization problem (P1)
is solved using an alternating approach, where the required
number of batteries and PV panels are calculated alternatively
until convergence. It may be noted that the proposed algorithm
converges when the required number of batteries (or PV
panels) at the current iteration and previous iteration are the
same, i.e., x(k+1) = x(k), where x is the number of batteries
(or PV panels) and k is the number of iterations at which the
algorithm converges. For iterative approach, the convergence
happens at third iteration, where the number of batteries and
PV panels converges as shown in Fig. 6. It is evident that

3The reason for July, August, and December to have lowest score might be
due to rainy season. The solar irradiance is unpredictable in the rainy weather,
while this does not apply for the month of December as it is winter season
in December in New Delhi.



for the first iteration, the number of PV panels and batteries
are the highest, while as the number of iterations increases,
the required number of batteries and PV panels converges.
Fig. 7 shows the variation of the number of batteries and PV
panels required to operate ONU-AP with the variation of α.
It is evident that the energy resources required for without
wind scenario are more compared to with wind scenario. This
is due to the fact that with the addition of wind energy, the
dependency of ONU-AP on PV panels and batteries reduces,
therefore, the number of batteries and PV panels required are
also lower. Moreover, as the number of batteries is dependent
on the power consumption of ONU-AP during the non-solar
hour, thus the number of batteries is not affected by change in
α. Furthermore, it can also be observed that as the fraction of
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Fig. 6. Convergence of the proposed approach for New Delhi for without
wind scenario.

solar power allocated to ONU-AP increases, i.e., α increases,
the number of PV panels required by ONU-AP decreases.
Moreover, with the increase in α from 0.2 to 1, there is a
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Fig. 8. PV panel allocation according to solar profile.

reduction in the number of PV panels from 130 to 24 for
without wind scenario. Similarly, there is a reduction in the
number of PV panels from 120 to 22 for with wind scenario.

In Fig. 8, the PV panel allocation from 15-Mar-2019 to
24-Mar-2019 is shown. It is evident from Fig. 8(a) that as the
solar power for 21th March is the least thus, the number of PV
panels required by ONU-AP is the highest, i.e., 37 for without
wind scenario and 29 for with wind scenario. Similarly, the
solar power for 20th March is the highest; thus, the number
of PV panels for this day is 19. If we use wind energy, then
the number of PV panels reduces by 3. Further, it is observed
that for with wind scenario the number of PV panels not only
depends on the solar power but also depend on the wind power.
Hence, the required number of PV panels is smaller for 15th

March as compared to 20th March.
The amount of energy resources required by ONU-AP for

different approaches is shown in Fig. 9. It is evident that
with Min approach the energy resource allocated to ONU-
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Fig. 9. The number of batteries (blue bars) and PV panels (yellow bars) required by ONU-AP for i) Approach I: Min approach, ii) Approach II: Max approach,
iii) Approach III: Median approach, iv) Approach IV: 2% outage approach, v) Approach III: Proposed MERA.
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Fig. 10. Battery lifetime (blue bars) and normalized cost (yellow bars) analysis for New Delhi at 40 Mbps throughput for i) Approach I: Min approach, ii)
Approach II: Max approach, iii) Approach III: Median approach, iv) Approach IV: 2% outage approach, and v) Approach V: Proposed MERA.
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AP is lowest, while using Max approach the energy resource
allocation is highest compared to other approaches followed
by MERA, 2% outage, Median and Min approach. Further, it is
evident that there is a reduction of 235 PV panels and 1 battery
using MERA compared to Max approach. For simulations, we
have used the value of α to be 1, as the resource allocation
for α = 1 is the lowest. However, this will affect the lifetime
of the batteries, which is analyzed in detail in later subsection.
In order to alleviate the effect of energy resource allocation
on battery lifetime, operator may choose the value of α such
that the desired battery lifetime can be guaranteed.

C. Battery Lifetime

Battery lifetime of a lead-acid battery is dependent on
the number of charging-discharging cycles of the battery.
The number of charging discharging cycles are calculated
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Approach II: Max approach, iii) Approach III: Median approach, iv) Approach IV: 2% outage approach, and v) Approach V: Proposed MERA.
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Fig. 13. Power outage (blue bars) and normalized cost (yellow bars) analysis for New Delhi at 40 Mbps throughput for the cases where outage is below the
outage threshold of 2%, i.e., i) Approach I: Max approach, ii) Approach II: 2% outage approach, iii) Approach III: Proposed MERA with 0% outage and v)
Approach IV: Proposed MERA allocation with 2% outage.

using rain-flow cycle counting algorithm [50]. A cycle to
failure ratio (CTFn) is specified by the operator based on
the characteristic of the battery. The cycle to failure ratio
represents the number of cycles the battery can have during
its lifetime. The battery lifetime of a lead-acid battery can be
calculated as follows [50]:

Blif =
1∑N

n=1
Cn

CTFn

, (27)

where the number of cycles is denoted by Cn, CTFn is the
cycle to failure ratio, and the number of regions in which DoD
is splitted is denoted by N .

Fig. 10 shows the lifetime and normalized cost analysis
for the different approaches for with wind and without wind

scenarios. The cost of wind turbine is calculated as:

CW = CWA
+ CWO

, (28)

where CWA
is the asset cost of the wind turbine and CWO

is
the O&M cost of the wind turbine [41]. The asset and O&M
cost of PV panel, battery, and wind turbine are summarized
in Table VI. According to Table VI, the cost of battery can be
calculated from (15). The lifetime of a battery is considered
to be five years, and the lifetime of the PV panel and wind
turbine is considered to be 20 years [41]. Further, we have
considered the system lifetime to be equal to the lifetime of
PV panel, and therefore, the total number of replacements of
battery is three. Finally, the cost of 5W PV panel, battery and
wind turbine are $21.00, $102.81, and $17.60, respectively.
The normalized cost of the system is calculated with respect
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Fig. 14. CO2 emissions (blue bars) and normalized cost (yellow bars) analysis for New Delhi at 40 Mbps throughput for i) Approach I: Max approach, ii)
Approach II: 2% outage approach, iii) Approach III: Proposed MERA with 0% outage and v) Approach IV: Proposed MERA allocation with 2% outage.

TABLE VI
COST OF ENERGY RESOURCES [41]

Parameter Values
Asset cost of battery $195/kWh

Asset cost of PV panel $3000/kWh
Asset cost of wind turbine $2500/kWh

O&M cost of battery 2% of Casset
B

O&M cost of PV panels 2% of Casset
P

O&M cost of wind turbine 2% of Casset
W

to the cost of without wind scenario for Max approach. It is
evident from Fig. 10 that as the normalized cost increases,
the lifetime of the batteries increases. This is due to the fact
that as the normalized cost increases, the energy resource
allocation at the backup ONU-AP increases. With the increase
in the number of batteries and PV panels, the batteries will
discharge to a higher discharging value. As an example, for
the same ONU-AP load, if the energy resource allocation is
low, i.e., the number of batteries and PV panels allocated to
operate ONU-AP is low. Then, the batteries will go to a lower
discharge value in order to provide the same amount of power.
Similarly, if the energy resource allocation is high, the batteries
will not go to a lower discharge value. Thus, it can be seen
from Fig. 10a, the Min approach has the least energy resource
allocation, and therefore, the lifetime of the batteries is the
least. Similarly, the Max approach has the highest cost as well
as lifetime also. Further, the cost of MERA approach decreases
by 67% however, the lifetime of the batteries decreases by only
10% compared to the Max approach, which is an advantage
of MERA. While in comparison with the Min, Median, and
2% outage approaches, the battery lifetime is higher for the
proposed algorithm. A similar trend in the lifetime of the
proposed approach is seen in Fig. 10b for the with wind
scenario where the lifetime of batteries decreases by 12% with
a decrease in 67% of the cost for MERA approach as compared
to Max approach.

In Fig. 11, the lifetime of the batteries with respect to α is

shown. It is evident that as α increases, the lifetime of the bat-
teries decreases. This is because the energy resources allocated
to ONU-AP decreases as α increases. As the allocated energy
resources decreases, the batteries will have a lower state-of-
charge or deep discharge. A battery of higher capacity might
not discharge up to DoD limit, while a battery will lower
capacity might have to go to deep discharge, and therefore,
the lifetime of the battery decreases. Moreover, for MERA with
2% outage there is a further decrease in the energy resource
allocation compared to MERA with 0% outage therefore, the
lifetime of the batteries further decreases by 1 year 4 months
for α = 1.

D. Power outage analysis

This subsection analyzes the performance of the energy
resource allocation framework in terms of power outage. The
power outage in the system represents the amount of time (in
%) for which the power supply to the ONU-AP is unavailable.
It is evident from Fig. 12 that the outage for MERA approach
is the least, while for Min approach the outage is maximum.
Further, it is evident that for Min, Max, Median, and 2%
outage approach, the outage is inversely proportional to the
normalized cost. As the normalized cost increases, the outage
decreases. This is due to the fact that as the normalized cost
increases, the energy resource allocation also increases, thus
the probability that power will not be available to ONU-AP
is less and the outage will decrease. Moreover, the advantage
of the proposed MERA in terms of outage is clearly evident
from Fig. 12a. The outage for MERA is 0% which 0.5% less
than the outage from Max approach, whereas in terms of cost
a reduction of 67% is achieved. A similar trend is achieved for
with wind scenario in Fig. 12b, where the outage for proposed
MERA is the least. Further, it can be seen from Fig. 12
there are only three approaches providing outage less than the
considered operator’s power outage threshold of 2%. These
three approaches are compared with the proposed MERA with
2% outage in Fig. 13 for without and with wind scenario.
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Fig. 15. Analysis for (a) Energy resource allocation, (b) Cost, (c) Lifetime,
and (d) CO2 emissions for different approaches for without wind scenario.

It is evident that MERA with 2% outage has a lower energy
resource requirement compared to the other three approaches.
If we compare two approaches with equal outage, i.e., MERA
with 2% outage and 2% outage with non-ML based energy
resource allocation, it is evident that using MERA the energy
resource requirement is less. Moreover, there is a trade-off
between MERA with 2% and MERA with 0% outage, i.e., as
normalized cost increases, the outage decreases.

E. Carbon footprint analysis

The environmental impact of the energy resource allocation
scheme in terms of CO2 emissions is shown in Fig. 14. The
CO2 emissions for battery, wind turbine, and PV panel are
4.22, 0.96, and 0.96 tonnes CO2/MWh, respectively [51]. For
2017-18, the weighted average CO2 emission for India is 0.82
tCO2/MWh [52]. It can be observed from Fig. 14 that the CO2

emissions for FiWi network are proportional to the allocated
energy resources. This is due to the fact that as the amount of
energy resource increases, the cost and CO2 emissions from
the energy resources increases. Further, it is evident from
Fig. 14 that CO2 emissions as well as cost is the least for
MERA with 2% outage, which is 63% and 73% lesser than
the grid power supply for without and with wind scenario,
respectively.

F. Trade-off analysis between energy resource allocation, bat-
tery lifetime, power outage, cost, and CO2 emissions

The trade-off between energy resource allocation, battery
lifetime, power outage, cost, and CO2 emissions is shown in
Fig. 15. In comparison with Max energy resource allocation,
i.e., the best case scenario, there is a reduction of 235 PV
panels and 2 batteries compared to MERA with 0% outage.
Similarly, a reduction in cost of $200, 0.5% outage, and

47.82% CO2 emissions is evident for MERA with 0% outage
compared to Max approach. However, there is a decrease in
lifetime by 6 months compared to Max approach. Thus, a
trade off between lifetime and energy resource allocation is
clearly evident from Fig. 15. Further, in comparison with ML
based 2% outage scheme, the energy resource requirement
of MERA with 0% outage increases by 10%, however, the
lifetime of the batteries decreases by 18% with a decrease in
outage of 2%. Furthermore, for the same outage of 2%, the
advantage of MERA compared to non-ML based 2% outage
scheme is evident in terms of reduction in the number of
PV panels by 30, the number of batteries by 1, 21.47% cost,
and 18.64% CO2 emissions. However, as there is a trade-off
between lifetime and energy resource allocation, thus, with
the use of MERA there is a reduction in lifetime of batteries
by 6 months (10%). However, it can be noted that with the
reduction in lifetime by 10%, there is an improvement in CO2

emissions and cost by 21.47% and 18.64%, respectively. Thus,
it can be concluded that using MERA the performance of the
system is improved.

VII. CONCLUSIONS

In this paper, we proposed a joint energy resource opti-
mization framework to minimize the batteries and PV panels
required to operate ONU-AP for a FiWi network. We divided
the optimization problem into two sub-problems: 1) Minimum
PV panel allocation for a fixed number of batteries (MinBatAl-
loc) and 2) Minimum battery allocation for a fixed number of
PV panels (MinPVAlloc). These two sub-problems are then
solved alternatively to calculate the energy resources required
by ONU-AP for with and without wind scenario. Further, in
order to classify the fraction of solar power supplied to operate
ONU-AP and battery we introduced a system parameter α and
analyzed its impact on system performance such as, energy
resource allocation and lifetime. Moreover, we compared the
performance of our proposed approach MERA with the non-
ML based approaches, such as Max, Min, Median, and outage
threshold. The results showed that using MERA there is a
reduction in energy resource allocation, cost, CO2 emissions as
well as outage compared to Max energy resource allocation,
which is the best case scenario. However, in comparison to
Max resource allocation, there is a reduction of battery lifetime
by 10%. Thus, a trade-off between energy resource allocation
and lifetime has been shown in this paper. Moreover, for the
same outage limit of 2%, the proposed MERA has a reduction
in 18.64% CO2 emissions, 21.47% cost, 30 PV panels, and
1 battery in comparison of MERA with 0% outage. However,
due to the reduction in energy resources, there is a decrease in
battery lifetime of 10% for MERA with 0% outage compared
to MERA with 2% outage. The possible future extension of the
proposed work can be study of different throughput profiles
and propose a scheme where the trade-off between energy
resource allocation and lifetime can be further minimized.
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