
1

Beyond QUIC v1 – A First Look at Recent
Transport Layer IETF Standardization Efforts

Mike Kosek, Tanya Shreedhar, and Vaibhav Bajpai

Abstract—The transport layer is ossified. With most of
the research and deployment efforts in the past decade
focussing on the Transmission Control Protocol (TCP)
and its extensions, the QUIC standardization by the
Internet Engineering Task Force (IETF) is to be finalized
in early 2021. In addition to addressing the most urgent
issues of TCP, QUIC ensures its future extendibility and
is destined to drastically change the transport protocol
landscape. In this work, we present a first look at emerging
protocols and their IETF standardization efforts beyond
QUIC v1. While multiple proposed extensions improve on
QUIC itself, Multiplexed Application Substrate over QUIC
Encryption (MASQUE) as well as WebTransport present
different approaches to address long-standing problems,
and their interplay extends on QUIC’s take to address
transport layer ossification challenges.

Index Terms—Transport protocols, IETF, QUIC,
MASQUE, WebTransport

I. INTRODUCTION

The transport layer, which is responsible for the
end-to-end connectivity between peers, is ossified
[1]. While most of the transport protocol related re-
search in the past decade focussed on the extension
of TCP as the predominant transport protocol in the
Internet, multiple studies showed that this quest is
cumbersome, leading to slow adoption of innovative
improvements like Explicit Congestion Notification
(ECN) (RFC 3168) or Multipath TCP (MPTCP)
(RFC 6824), or even no adoption at all. Where
previous efforts to deploy novel transport protocols
like Stream Control Transmission Protocol (SCTP)
(RFC 4960) also did not lead to a wide adoption
due to deployment obstacles for non-TCP/UDP-
based protocols, using UDP as a substrate proto-
col promises Internet-scale deployability. Recently,
QUIC as a UDP-based protocol set out to solve
TCP’s issues while ensuring its future extendibility
[2]. While QUIC is destined to drastically change
the transport protocol landscape, TCP is still the
most used protocol, and its importance will not
diminish in the near future. Acting as a fallback

protocol, services will be offered with both TCP
and QUIC for an extensive amount of time, and
more specialized use-cases like Border Gateway
Protocol (BGP) (RFC 4271) might continue to use
TCP indefinitely. To ensure continuous improve-
ments, the IETF TCP Maintenance and Minor Ex-
tensions (TCPM) Working Group (WG) discusses
TCP and MPTCP modifications, and directs the
standardization process for proposed specifications.
Within TCPM, RFC 8803 as well as RFC 8961
were recently standardized. The 0-RTT TCP Convert
Protocol (RFC 8803) aims at improving the deploy-
ment of TCP extensions, where Requirements for
Time-Based Loss Detection (RFC 8961) discusses
best practices to parameterize loss detection algo-
rithms. The RACK-TLP loss detection algorithm for
TCP [3] was submitted to the Internet Engineering
Steering Group (IESG) for publication in December
2020, leveraging Recent Acknowledgements for fast
recovery and improving on tail loss by explicitly
triggering ACK feedback through Tail Loss Probes.
While these additions are essential improvements to
TCP, they may not overcome TCP’s inherent issues.

With the standardization of QUIC by the IETF
to be finalized in early 2021, QUIC’s first version
v1 (see §II) addresses the most urgent issues of
TCP such as multiplexing, Head-of-line blocking
(HOL blocking), mandatory encryption, as well as
reduced connection establishment time with 0-RTT
support while focussing on the web use-case, i.e.,
delivery of web content to browsers. Extending on
v1, the WG actively discusses future extensions,
which we will detail in §III. These extensions
introduce improvements to version negotiation as
well as connection IDs, add multipath capabilities,
enable unreliable delivery within QUIC as well as
HTTP/3, further extend the future useability of the
QUIC protocol, and add performance improvements
by negotiating acknowledgement handling.

QUIC’s mandatory encryption does provide chal-
lenges for specialized use-cases where end-to-end



2

connectivity is not possible (e.g., censorship), not
feasible (e.g., satellite links), or not wanted (e.g.,
privacy concerns). The IETF MASQUE WG was
chartered to address these challenges.

MASQUE (see §IV) proposes the use of QUIC
as a substrate protocol, allowing arbitrary data to
be tunneled over QUIC. While this addresses TCP
proxy use-cases, it also introduces an alternative
layering of Virtual Private Networks (VPNs), where
nested reliability can be avoided by leveraging
QUIC datagram frames.

While QUIC and MASQUE set out to change
our transport protocol usage, the web security model
limits browser-based web applications to directly ac-
cess transport protocol features. Protocols like Web-
Socket (RFC 6455) and WebRTC (RFC 7478) [4]
were indispensable in rejuvenating static request-
response-based web content and benefited from
years of deployment of their substrate protocols.
However, they also inherited their fundamental dis-
advantages. The WebTransport WG (see §V) ad-
dresses these shortcomings by utilizing QUIC as a
substrate protocol, exposing its features to browser-
based web applications while considering fallback
mechanisms to traditional TCP-based connections.

In this article, we present a first look at these
most recent transport layer IETF standardization
efforts beyond QUIC v1. While our work does not
cover advances in congestion control schemes such
as Bottleneck Bandwidth and Round-trip propaga-
tion time (BBR) or related standardization work
by the Internet Congestion Control Research Group
(ICCRG), we refer the inclined reader to [5] [6]. The
remainder of this article is structured as follows: §II
briefly introduces QUIC, where §III details future
extensions beyond v1. §IV presents recent develop-
ments in the usage of QUIC as a substrate protocol
within MASQUE, where §V details the advances of
providing novel transport protocol features within
the web security model pursued by the WebTrans-
port WG. Finally, §VI details the interplay of the
presented IETF standardization efforts, followed by
the conclusion in §VII.

II. QUIC V1

QUIC was launched by Google in 2012 [7]
with the goal to provide secure and reliable low
latency end-to-end transport. Google added support
for Chrome in 2013, and by 2017, all Chrome

2016 2019 2020

IETF96 
Jul

IETF97 
Nov

IETF106 
Nov

IETF107 
Mar

IETF107 
Mar

IETF108 
Jul

IETF108 

Jul

QUIC WebTransport MASQUE

BO
F 

 

Pr
op

os
ed

W
GW

G

BO
F 

 W
G

BO
F 

 W
G

Fig. 1. Timeline of recent IETF transport layer standardization
efforts. The QUIC working group was established at IETF ’97
in 2016, followed by the establishment of MASQUE as well as
WebTransport at IETF ’108 in 2020.

and Android YouTube app users were using QUIC.
QUIC provides stream multiplexing without the
drawbacks of TCP’s HOL blocking. The initial de-
sign idea of QUIC was provided by SPDY, which
was later standardized as HTTP/2 (RFC 7540),
enabling the multiplexing of streams using the same
TCP connection. The IETF chartered the QUIC
working group in 2016 (see Figure 1) to provide
a standards-track specification for a UDP-based,
stream-multiplexing, encrypted transport protocol
based on Google’s pre-standardization implemen-
tation and deployment experiences. QUIC’s WG
charter holds several goals and milestones relating
to the core transport functionality, security, the
mapping between different HTTP protocols, the
extension of core protocol facilities, and the applica-
bility and manageability of the implications of the
protocol. QUIC mitigates the HOL blocking issue
by leveraging stream multiplexing in the transport
layer, improves on connection establishment times
by sending a cryptographic handshake as part of
the transport handshake, and provides 1-RTT hand-
shakes for first-time connections as well as 0-RTT
handshakes for subsequent connections using TLS
1.3 (RFC 8446).

III. QUIC EXTENSIONS

While the working group initially focussed on the
web use-case, many QUIC extensions have recently
been proposed. In the following, we will discuss the
proposals listed in Table I.

An Unreliable Datagram Extension to QUIC:
QUIC transmits a reliable stream of application data
where reliability is achieved on a per-stream basis.
The proposed extension enhances QUIC with the
support for unreliable datagrams, aiding in use-cases
where reliability is undesired (e.g., real-time com-
munication). With its reduced handshake latency,



3

WG Document Type Reference
QUIC WG Charter Charter /wg/quic/about/

An Unreliable Datagram Extension to QUIC WG I-D draft-ietf-quic-datagram
QUIC-LB: Generating Routable QUIC Connection IDs WG I-D draft-ietf-quic-load-balancers
Compatible Version Negotiation for QUIC WG I-D draft-ietf-quic-version-negotiation
3GPP Access Traffic Steering Switching and Splitting Ind I-D draft-bonaventure-quic-atsss-overview
Multipath Extensions for QUIC Ind I-D draft-deconinck-quic-multipath
Multipath Extension for QUIC Ind I-D draft-liu-multipath-quic
Greasing the QUIC Bit Ind I-D draft-quic-bit-grease
Sender Control of Acknowledgement Delays in QUIC Ind I-D draft-quic-delayed-ack

TABLE I
OVERVIEW OF QUIC IETF DOCUMENTS. TYPE DIFFERENTIATES DOCUMENT TYPE: WG CHARTERS ARE DENOTED AS CHARTER,

ADOPTED INTERNET-DRAFTS AS WG I-D, AND INDIVIDUAL DRAFTS AS IND I-D

.
unreliable delivery via QUIC improves on existing
solutions such as DTLS (RFC 6347). Moreover, its
multi-streaming feature can be leveraged to mul-
tiplex reliable and unreliable streams within one
connection, thereby providing partial reliabilty, and
use pluggable congestion control where required.
Another use-case for unreliable delivery are VPNs,
requiring generic IP packet tunnelling as provided
by MASQUE (see §IV).

QUIC-LB: Generating routable QUIC connection
IDs: QUIC maintains a connection ID (CID) per
connection, which allows migration during network
changes, and provides unlinkability features across
connection migration. If servers do not provide
additional CIDs, they might choose linkable CIDs
from servers behind load balancers. In this situ-
ation, the client either terminates the connection
during the migration or remains linkable, violating
QUIC’s design goal. QUIC-LB specifies standards
for encoding routing information given a small set
of configuration parameters. Using QUIC-LB, load-
balancers communicate the algorithm parameters
to generate routable CIDs rather than generating
individual CIDs to servers.

Compatible version negotiation for QUIC: Cur-
rently, the QUIC server indicates if a client offered
version is not accepted, but does not provide in-
formation to select a mutually supported version.
The proposed version negotiation mechanism allows
a client and a server to leverage the similarities
between different versions and establish a mutually
supported/compatible version without the overhead
of extra round trips.

Multipath Extension for QUIC: The QUIC Mul-
tipath extension preserves the single-path QUIC
design features while simultaneously using multiple
paths for a single connection. The introduction and
preliminary work on multipath QUIC was presented

in [8]. Recently, the 3rd Generation Partnership
Project (3GPP) started a discussion to enable Access
Traffic Steering, Switching, and Splitting (ATSSS)
service for QUIC on multiple paths, where IETF
standardization and specifications can be beneficial
to attain the ATSSS design goals. Table I lists the
Informational 3GPP ATSSS Overview document, as
well as multiple individual multipath QUIC drafts
which are actively discussed within the WG. As of
now, no consensus has been reached on the adoption
of multipath QUIC in general, or a specific proposal
in particular. While all proposals differ in their way
to handle multipath QUIC requirements like link-
ability between flows, they are commonly in-line
with multipath extensions of other transport proto-
cols such as Concurrent Multipath Transfer SCTP
(CMT-SCTP) [9] or MPTCP (RFC 8684) [10].
These include features like bandwidth aggregation,
seamless handovers, and improved user Quality-
of-Experience related to the increasing number of
multi-homed devices. As an example, connection
migration can be leveraged on ordinary QUIC con-
nections to move a single QUIC flow from one IP
address to another, resulting in a hard handover.
Like MPTCP, multipath QUIC improves on this,
allowing devices to seamlessly switch from one
interface to another, thus providing resilience to
connection failures. Extending on these common
multipath features, the primary motivation behind
multipath QUIC however lies in the aggregation of
all available network resources to send data through
a single connection [11]. While this is useful for
e.g., large transfers, it also benefits dual-stacked
hosts, automatically selecting the best available path
in case the quality of the IPv4 and IPv6 paths differ
[12]. A descriptive example of multipath QUIC is
presented in §VI.

Greasing the QUIC Bit: Intermediaries and end-

https://datatracker.ietf.org/wg/quic/about/
https://datatracker.ietf.org/doc/draft-ietf-quic-datagram/
https://datatracker.ietf.org/doc/draft-ietf-quic-load-balancers/
https://datatracker.ietf.org/doc/draft-ietf-quic-version-negotiation/
https://datatracker.ietf.org/doc/draft-bonaventure-quic-atsss-overview/
https://datatracker.ietf.org/doc/draft-deconinck-quic-multipath/
https://datatracker.ietf.org/doc/draft-liu-multipath-quic/
https://datatracker.ietf.org/doc/draft-thomson-quic-bit-grease/
https://datatracker.ietf.org/doc/draft-iyengar-quic-delayed-ack/


4

points use the QUIC Bit to distinguish QUIC from
other protocols. A fixed value is currently sent in
the QUIC Bit of every packet, thus allowing end-
points and intermediaries to depend on a fixed value.
By leveraging the concept of GREASE (Generate
Random Extensions And Sustain Extensibility), the
grease_quic_bit transport parameter ensures the fu-
ture usage of the QUIC Bit by indicating that
an end-point is willing to receive QUIC packets
regardless of this bit’s value.

Sender Control of Acknowledgement Delays in
QUIC: A receiver acknowledges the reception of
data from the sender. Delaying these acknowledge-
ments reduces the CPU utilization at both sender
and receiver and potentially improves throughput.
However, these benefits are traded off by negatively
impacting congestion control and loss recovery.
The Sender Control of Acknowledgement Delays in
QUIC extension allows the end-points to advertise
the min_ack_delay transport parameter, which de-
fines the minimum amount of time an ACK can be
delayed.

While these proposals improve on QUIC, there
usage requires both communication partners to mu-
tually support an extension. As deployment experi-
ence with TCP has shown, this can lead to slow
adoption, or even no adoption at all. Pluginzing
QUIC [13] enables QUIC end-points to dynamically
exchange protocol extensions on a per-connection
basis, therefore requiring only one communication
partner to feature an extension.

IV. MASQUE

Driven by the shortcomings of proxying mech-
anisms like native HTTP Proxies (unencrypted,
HTTP/TCP), Socket Secure (SOCKS) (unencrypted
signaling, TCP and UDP), HTTP CONNECT (en-
cryption optional, TCP), or transparent TCP Proxies
(must be on-path, mandatory to use, TCP), the
IETF MASQUE WG (see Figure 1) was formed
in early 2020. MASQUE is chartered to develop
mechanisms that will allow arbitrary connections
to be tunneled within a single HTTP/3 connection
using explicit client-initiated signaling. Besides the
existing request/response model and authentication
mechanisms of HTTP, which can be leveraged for
service and parameter negotiation, QUIC’s unified
congestion controller will greatly improve on the
uncoupled flows handled by traditional proxies, and

allow multiple client-initiated reliable and unreli-
able connections to be transported within a single
HTTP/3 connection. To address censorship use-
cases, the tunneled data will be indistinguishable to
arbitrary encrypted HTTP connections on the wire,
preventing hints which possibly expose the nature of
the connection to adversaries. Moreover, to address
instances where UDP and/or HTTP/3 is actively
blocked on the client-proxy leg of the connection,
the MASQUE WG will consider HTTPS/TCP as a
fallback.

Initially proposed within the QUIC WG, Using
QUIC Datagrams with HTTP/3 (see Table II) was
recently moved to and adopted by the MASQUE
WG as a WG Internet draft. While the unreli-
able datagram extension of QUIC (see §III) pro-
vides a mechanism to send reliable and unreli-
able data simultaneously leveraging the security
and congestion-control properties of QUIC, it is
unable to de-multiplex application contexts. Using
QUIC Datagrams with HTTP/3 adds flow identifiers
for HTTP/3 applications at the start of the frame
payload. This Datagram-Flow-Ids represent bidirec-
tional flows in a single QUIC connection and allow
multiplexing and de-multiplexing of the application
data. This concept is leveraged within MASQUE as
well WebTransport (see §V).

As a primary focus for the WG, CONNECT-UDP
(see Table II) proposes a UDP-based counterpart to
the TCP-only HTTP CONNECT method. While it
would be possible to reuse HTTP CONNECT for
UDP, existing implementations would fallback to
TCP on the proxy-server leg of the connection,
which should be avoided. However, CONNECT-
UDP will be supported on HTTP/1.1, 2, and 3, and
therefore provides a TCP fallback mechanism on
the client-proxy leg of the connection as detailed
earlier. Using the CONNECT-UDP header, the client
instructs the proxy to open a UDP connection
to a provided URI. For HTTP/3, QUIC datagram
frames are leveraged, providing a proxied unreliable
connection between client and server. This enables
connections to multiple servers to be transported
within the same client-proxy HTTP/3 connection,
which are multiplexed and de-multiplexed using
Datagram-Flow-Ids While the chaining of multiple
proxies is supported, a proxy receiving CONNECT-
UDP can either connect to the indicated target or to
an upstream proxy. To use UDP on an end-to-end
path, all involved proxies have to support HTTP/3



5

WG Document Type Reference
MASQUE WG Charter Charter /wg/masque/about/

Using QUIC Datagrams with HTTP/3 WG I-D draft-ietf-masque-h3-datagram
The CONNECT-UDP HTTP Method WG I-D draft-ietf-masque-connect-udp
Requirements for a MASQUE Protocol to Proxy IP Traffic WG I-D draft-ietf-masque-ip-proxy-reqs
The CONNECT-IP method for proxying IP traffic Ind I-D draft-kuehlewind-masque-connect-ip
QUIC-Aware Proxying Using CONNECT-UDP Ind I-D draft-pauly-masque-quic-proxy
Discovery Mechanisms for QUIC-based Proxy Services Ind I-D draft-kuehlewind-masque-proxy-discovery
Transport Considerations for IP and UDP Proxying Ind I-D draft-westerlund-masque-transport-issues

WebTransport WG Charter Charter /wg/webtrans/about/
The WebTransport Protocol Framework WG I-D draft-ietf-webtrans-overview
WebTransport using HTTP/2 Ind I-D draft-kinnear-webtransport-http2
WebTransport over HTTP/3 Ind I-D draft-vvv-webtransport-http3
WebTransport over QUIC Ind I-D draft-vvv-webtransport-quic

TABLE II
OVERVIEW OF MASQUE AND WEBTRANSPORT IETF DOCUMENTS. TYPE DIFFERENTIATES DOCUMENT TYPE: WG CHARTERS ARE

DENOTED AS CHARTER, ADOPTED INTERNET-DRAFTS AS WG I-D, AND INDIVIDUAL DRAFTS AS IND I-D

.
leveraging QUIC datagram frames. Following suc-
cessful negotiation, all intermediaries will switch to
tunnel mode and restrict to forwarding packets until
the connection is closed.

Besides CONNECT-UDP, the requirements for
generic IP Proxying (see Table II) addressing tra-
ditional VPN use-cases are actively discussed, and
were recently adopted as a WG Internet draft. Favor-
ing HTTP/3 using QUIC datagram frames to prevent
nested reliability, a fallback to HTTP/2 is also sup-
ported, leveraging both protocols multiplexing capa-
bilities to run multiple IP proxied connections over
the same HTTP connection. For this purpose, an
IPv4 or IPv6 session has to be established between
the end-points, including support for IP address
assignment requests, route negotiation, and client
and server identification as well as authentication.
Where IP Proxying lays out the requirements for
proxying IP packets, CONNECT-IP (see Table II)
proposes a specific method to enable IP proxying
using HTTP/3 connections, thus partially covering
the outlaid requirements. A descriptive use-case of
IP Proxying is presented in §VI.

To proxy arbitrary QUIC connections, QUIC-
Aware Proxying Using CONNECT-UDP (see Table
II) addresses the specifics of tunneling QUIC over
QUIC for long header packets, e.g., the encapsu-
lation and encryption overhead of nested QUIC
connections, as well as the forwarding of short
header QUIC packets on established connections by
leveraging connection IDs.

Exceeding the presented efforts, supplemental
topics are discussed within the WG which are
also shown in Table II. Discovery Mechanisms
for QUIC-based Proxy Services discusses mech-

anisms to enable clients to be able to discover
non-transparent MASQUE proxies, while Trans-
port Considerations for IP and UDP Proxying in
MASQUE addresses challenges to preserve end-to-
end properties of the proxied flows.

V. WEBTRANSPORT

The web security model shapes the Internet land-
scape. While abstracting transport protocol features
to application layer protocols and exposing them to
web developers, browser-based web applications be-
came truly interactive and highly dynamic, radically
replacing static request-response based content.

The TCP streams exposed by the WebSocket
protocol (RFC 6455) provide bidirectional ordered
delivery and suffer from HOL blocking as well as
mandatory reliability, making it a poor fit for real-
time communication or latency-sensitive applica-
tions. This is improved by bootstrapping WebSocket
onto HTTP/2 (RFC 8441), which multiplexes arbi-
trary streams in a single HTTP/2 connection, hence
eliminating HTTP HOL blocking, but still suffering
from TCP HOL blocking. Layering WebSocket onto
HTTP/3 would solve this issue. However, existing
disadvantages persist, requiring additional round-
trips for the WebSocket protocol handshakes for ev-
ery stream, limiting connection initiation to clients
only, and lacking support for unreliable transport.

WebRTC (RFC 7478) [4] data channels improve
on this while leveraging SCTP (RFC 4960), provid-
ing ordered and unordered delivery, partial reliabil-
ity, and eliminating HOL blocking. As SCTP faced
deployment challenges (see §I), SCTP WebRTC
data channels use UDP as a substrate, a pattern also
embraced by QUIC (see §II).

https://datatracker.ietf.org/wg/masque/about/
https://datatracker.ietf.org/doc/draft-ietf-masque-h3-datagram/
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-udp/
https://datatracker.ietf.org/doc/draft-ietf-masque-ip-proxy-reqs/
https://datatracker.ietf.org/doc/draft-kuehlewind-masque-connect-ip/
https://datatracker.ietf.org/doc/draft-pauly-masque-quic-proxy/
https://datatracker.ietf.org/doc/draft-kuehlewind-masque-proxy-discovery/
https://datatracker.ietf.org/doc/draft-westerlund-masque-transport-issues/
https://datatracker.ietf.org/wg/webtrans/about/
https://datatracker.ietf.org/doc/draft-ietf-webtrans-overview/
https://datatracker.ietf.org/doc/draft-kinnear-webtransport-http2/
https://datatracker.ietf.org/doc/draft-vvv-webtransport-http3/
https://datatracker.ietf.org/doc/draft-vvv-webtransport-quic/


6

The IETF WebTransport WG (see Figure 1) was
formed to provide a mapping of HTTP and QUIC-
based protocols to a web interface API developed
by the World Wide Web Consortium (W3C) [14]
honoring the web security model. The utilized
protocols (referred to as transports) mandate uni-
and bi-directional streams, datagram support, and
encryption. Moreover, optional properties are de-
fined, which rely on features of specific proto-
cols. These include stream independence to prevent
HOL blocking, partial reliability to prevent retrans-
missions of datagrams, pooling support to share a
unified congestion controller, connection migration
to keep connections alive if the path changes, and
bandwidth prediction to aid use-cases like video
streaming or real-time gaming.

While the core incentives of WebTransport have
been discussed since 2018 as QUIC standardization
progressed, the WG was chartered in March 2020,
currently defining the requirements of WebTrans-
port, and the requirements on the utilized transports
Http2Transport, Http3Transport, as well as Quic-
Transport (see Table II). A descriptive example of
WebTransport is presented in §VI.

Http2Transport allows WebTransport peers to
multiplex arbitrary bidirectional streams over
HTTP/2 connections, where either end-point can
initiate a new stream. While WebTransport and reg-
ular HTTP data can be multiplexed simultaneously,
intermediaries traversed must explicitly support
WebTransport. Additionally, TCP HOL blocking re-
mains an issue, and the mandated support for unidi-
rectional streams and unreliable delivery are notice-
ably missing. While unidirectional streams can be
forged by requiring bidirectional streams to only use
one half of the connection, unreliability can not be
provided as TCP forcibly retransmits HTTP/2. As
datagrams are not expected to be reliably delivered,
but they might if the transport is using a TCP-
based protocol, the specification also covers this
fallback case. Additionally, Http2Transport does
feature pooling support, which ensures that a shared
congestion controller between multiple transports
sharing the same HTTP connection can be used.

Http3Transport does support all requirements
covered by Http2Transport, and extends on it by
also providing unidirectional streams, unreliable
delivery leveraging QUIC datagram frames with
HTTP/3 (see §IV), as well as stream independence
which eliminates HOL blocking.

QUIC

WebTrans

Client

QUIC

WebTrans

Internet

MASQUE

App. Servers

Browser

Fig. 2. Remote office use-case: A client requests resources via QUIC
and WebTransport from Application Servers, which are multiplexed
over a MASQUE tunnel proxying arbitrary IP packets.

Lastly, QuicTransport offers a minimal protocol
on top of QUIC, where WebTransport concepts
are directly mapped to the corresponding QUIC
counterparts if applicable. The main design goal is a
low overhead protocol, minimizing implementation
effort and complexity for extending existing QUIC
stacks with QuicTransport capabilities. QuicTrans-
port satisfies all WebTransport design requirements
except pooling support.

Besides the three presented proposals, a fourth
option of FallbackTransport (no active document) is
discussed within the WG. Aiming at a mapping to
HTTP/1.1 and HTTP/2, multiplexed streams can be
simulated on top of the WebSocket protocol, where
the existing standardized WebSocket mappings to
the HTTP protocols are utilized as-is.

While QuicTransport offers a solution with low
overhead, low complexity, and minimal implemen-
tation effort, Http3Transport offers pooling support
as well as HTTP features like status codes, headers,
load balancing, and rerouting, possibly outweigh-
ing the increased complexity and interdependency.
Acknowledging these advantages, an adoption call
was recently issued for the Http3Transport proposal,
aiming to focus the WGs ressources at WebTrans-
port over HTTP/3 in the foreseeable future.

VI. INTERPLAY

While all discussed protocols and extensions
propose vastly different approaches, their interplay
extends on QUIC’s take to address transport layer
ossification challenges. We present two different
use-cases highlighting their combined benefits. Fig-
ure 2 showcases a remote office scenario. A client
requests resources using plain QUIC as well as
WebTransport via a browser. The client runs a
VPN service leveraging a MASQUE tunnel to proxy
arbitrary IP packets, connecting to a VPN gateway
at the main office that de-multiplexes the tunnel and



7

MPQUIC Client Internet MPQUIC Server

MASQUE

QUIC

QUIC
MASQUE 

Server
WiFi

5G

Website

Fig. 3. Mobile use-case: A client is connected to a server using mul-
tiple paths, where one QUIC connection is proxied via a MASQUE
server.

proxies the requests to their respective application
servers. A mobile use-case is presented in Figure 3.
A multipath QUIC client is connected to a multipath
QUIC server using WiFi and 5G simultaneously,
thus featuring multiple end-to-end paths. One con-
nection is proxied using a MASQUE server, where
the end-to-end QUIC connection is tunneled within
the MASQUE QUIC connection. Benefitting from
both the proxied MASQUE connection optimized
for the access network as well as the multipath
capabilities, the client’s packet scheduler can dy-
namically select the optimal path and seamlessly
re-route packets in case of path property changes
or connection losses.

VII. CONCLUSION

The transport layer is evolving. With QUIC at
the core of this renewal, its future versions will
build on the foundation of QUIC v1 deployed on the
Internet, thereby extending its reach to increasingly
more application areas. While multiple extensions
improve on QUIC itself, MASQUE shows promise
to supersede traditional proxies and VPNs, and
WebTransport will further enhance the rejuvenation
of the Web, thus aiding the development of next-
generation Web applications. While this article of-
fered a first impression at the recent transport layer
IETF standardization efforts beyond QUIC v1, the
presented protocols and extensions propose different
approaches to address long-standing problems, and
their interplay extends on QUIC’s take to address
ossification challenges. Marking only the beginning,
a new era of protocols is about to emerge.

ACKNOWLEDGMENTS

We would like to thank Lars Eggert and Mirja
Kühlewind for their feedback and guidance, as well
as the editor and the reviewers for their valuable
remarks.

REFERENCES

[1] G. Papastergiou et al., “De-Ossifying the Internet Transport
Layer: A Survey and Future Perspectives,” IEEE Commu-
nications Surveys Tutorials, vol. 19, no. 1, 2017. [Online].
Available: https://doi.org/10.1109/COMST.2016.2626780

[2] Y. Cui et al., “Innovating Transport with QUIC: Design
Approaches and Research Challenges,” IEEE Internet
Computing, vol. 21, no. 2, 2017. [Online]. Available:
https://doi.org/10.1109/MIC.2017.44

[3] “The RACK-TLP loss detection algorithm for TCP,” (Date
accessed: 03.01.2021). [Online]. Available: https://datatracker.
ietf.org/doc/draft-ietf-tcpm-rack/

[4] C. Jennings et al., “Real-time communications for the Web,”
IEEE Communications Magazine, vol. 51, no. 4, 2013. [Online].
Available: https://doi.org/10.1109/MCOM.2013.6495756

[5] M. Polese et al., “A Survey on Recent Advances in Transport
Layer Protocols,” IEEE Communications Surveys Tutorials,
vol. 21, no. 4, pp. 3584–3608, 2019. [Online]. Available:
https://doi.org/10.1109/COMST.2019.2932905

[6] T. Zhang and S. Mao, “Machine Learning for End-to-
End Congestion Control,” IEEE Communications Magazine,
vol. 58, no. 6, 2020. [Online]. Available: https://doi.org/10.
1109/MCOM.001.1900509

[7] A. Langley et al., “The QUIC Transport Protocol: Design and
Internet-Scale Deployment,” in SIGCOMM, 2017, pp. 183–196.
[Online]. Available: https://doi.org/10.1145/3098822.3098842

[8] Q. De Coninck and O. Bonaventure, “Multipath QUIC: Design
and Evaluation,” in CoNEXT, 2017, pp. 160–166. [Online].
Available: https://doi.org/10.1145/3143361.3143370

[9] J. R. Iyengar et al., “Concurrent Multipath Transfer Using
SCTP Multihoming Over Independent End-to-End Paths,”
IEEE/ACM Transactions on Networking, vol. 14, no. 5, pp.
951–964, 2006. [Online]. Available: https://doi.org/10.1109/
TNET.2006.882843

[10] M. Li et al., “Multipath Transmission for the Internet: A
Survey,” IEEE Communications Surveys Tutorials, vol. 18,
no. 4, pp. 2887–2925, 2016. [Online]. Available: https:
//doi.org/10.1109/COMST.2016.2586112

[11] J. Qadir et al., “Resource Pooling for Wireless Networks:
Solutions for the Developing World,” SIGCOMM Comput.
Commun. Rev., vol. 46, no. 4, pp. 30–35, 2016. [Online].
Available: https://doi.org/10.1145/3027947.3027953

[12] V. Bajpai and J. Schönwälder, “A longitudinal view of
dual-stacked websites—failures, latency and happy eyeballs,”
IEEE/ACM Transactions on Networking, vol. 27, no. 2, pp.
577–590, 2019. [Online]. Available: https://doi.org/10.1109/
TNET.2019.2895165

[13] Q. De Coninck et al., “Pluginizing QUIC,” in SIGCOMM,
2019, pp. 59–74. [Online]. Available: https://doi.org/10.1145/
3341302.3342078

[14] “PROPOSED WebTransport Working Group Charter,” (Date
accessed: 03.01.2021). [Online]. Available: https://w3c.github.
io/webtransport-charter/charter.html

Mike Kosek is a PhD Student at TUM, Germany. His current research
focuses on Internet architectures in general, and transport protocol
standardization, development, and deployment, in particular.

Tanya Shreedhar is a PhD student at IIIT-Delhi, India. Her research
interests include next-generation networks and systems with a focus
on transport layer protocols.

Vaibhav Bajpai is a senior researcher at TUM, Germany. He
is interested in performance and management of next-generation
networked systems.

https://doi.org/10.1109/COMST.2016.2626780
https://doi.org/10.1109/MIC.2017.44
https://datatracker.ietf.org/doc/draft-ietf-tcpm-rack/
https://datatracker.ietf.org/doc/draft-ietf-tcpm-rack/
https://doi.org/10.1109/MCOM.2013.6495756
https://doi.org/10.1109/COMST.2019.2932905
https://doi.org/10.1109/MCOM.001.1900509
https://doi.org/10.1109/MCOM.001.1900509
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3143361.3143370
https://doi.org/10.1109/TNET.2006.882843
https://doi.org/10.1109/TNET.2006.882843
https://doi.org/10.1109/COMST.2016.2586112
https://doi.org/10.1109/COMST.2016.2586112
https://doi.org/10.1145/3027947.3027953
https://doi.org/10.1109/TNET.2019.2895165
https://doi.org/10.1109/TNET.2019.2895165
https://doi.org/10.1145/3341302.3342078
https://doi.org/10.1145/3341302.3342078
https://w3c.github.io/webtransport-charter/charter.html
https://w3c.github.io/webtransport-charter/charter.html

	Introduction
	QUIC v1
	QUIC Extensions
	MASQUE
	WebTransport
	Interplay
	Conclusion
	References
	Biographies
	Mike Kosek
	Tanya Shreedhar
	Vaibhav Bajpai


