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The availability of intelligent image editing techniques and anti-forensic algorithms, make it convenient to
manipulate an image and to hide the artifacts that it might have produced in the process. Real world forg-
eries are generally followed by the application of enhancement techniques such as filtering and/or conversion
of the image format to suppress the forgery artifacts. Though several techniques evolved in the direction of
detecting some of these manipulations, additional operations like re-compression, non linear filtering and
other anti-forensic methods during forgery are not deeply investigated. Towards this, we propose a robust
method to detect whether a given image has undergone filtering (linear or non linear) based enhancement,
possibly followed by format conversion after forgery. In the proposed method, JPEG quantization noise is
obtained using natural image prior and quantization noise models. Transition probability features extracted
from the quantization noise are used for machine learning based detection and classification. We test the ef-
fectiveness of the algorithm in classifying the class of the filter applied and the efficacy in detecting filtering
in low resolution images. Experiments are performed to compare the performance of the proposed technique
with state-of-the-art forensic filtering detection algorithms. It is found that the proposed technique is su-
perior in most of the cases. Also, experiments against popular anti-forensic algorithms show the counter
anti-forensic robustness of the proposed technique.
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1. INTRODUCTION
Digital media can be easily acquired and modified using advanced software tools. The
purpose of depicting the captured scenario through a multimedia would not be rele-
vant if the content is modified with malicious intentions. Given the widespread usage
of multimedia such as images and videos, and their gaining importance as evidence
in a court of law, it is of paramount importance to know the manipulations an image
has undergone. Even though there are active forensic techniques like [Bhatnagar et al.
2013], several passive techniques have been developed to detect whether a given image
is authentic or tampered. Various types of forgery such as splicing and copy-move have
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been investigated. Previous techniques like ([Farid 2009], [Chen et al. 2008], [Huang
et al. 2010], [Liu et al. 2011] and [Puglisi et al. 2013]), consider JPEG double compres-
sion as a possible indication of forgery. This may not be true always, as an image may
be simply decompressed and recompressed again. Since a forgery is often followed by
an enhancement technique to make the forgery more convincing and less detectable,
algorithms are recently being developed to detect enhancement operations in addition
to the forgery. These operations include noise removal/addition, contrast enhancement,
filtering enhancement, de-blurring, JPEG compression and edge enhancement etc. and
can be performed after forgery [Conotter et al. 2013a]. These enhancements are also
possible in encrypted domain in cloud storage devices [Lathey and Atrey 2015]. A typi-
cal forgery pipeline followed by an adversary is shown in the Fig 1. These enhancement
operations can be considered as valid indications of forgery.

Out of these enhancement operations, filtering is one of the most commonly targeted
technique in the forensic literature. Various techniques are proposed to detect linear
filtering of images. For example, in [Conotter et al. 2013a], the authors proposed a
Generalized Gaussian Distribution (GGD) based modeling of Discrete Cosine Trans-
form (DCT) coefficients of a JPEG image for detecting whether the image is linearly
filtered or not. Similarly, Conotter et al. in [Conotter et al. 2013b] proposed a set of his-
togram based statistical features to identify the type of linear filter applied to a JPEG
image and its compression quality factor. Though the accuracy achieved by these tech-
niques is high for linear filtering detection, filtering of TIFF images and robustness of
the algorithm against double JPEG compression (i.e. when JPEG compressed image
is filtered and re compressed) is not deeply investigated. This investigation is impor-
tant as the artifacts of linear filtering enhancement that the image underwent prior to
these operations might be suppressed [Kang et al. 2013].

Non-linear filtering, especially median filter detection has gained a lot of momen-
tum lately as it can be used maliciously to hide fingerprints implanted during forgery.
Authors in [Kang et al. 2013], [Zhang et al. 2014] and [Kirchner and Bohme 2008] are
in consensus with the fact that, such non linear filtering operations can significantly
reduce the performance of forensic techniques that assume linearity in detecting re-
sampling or scaling of images. In order to counter this problem of reduced performance
of forensic algorithms because of median filtering, techniques like [Zhang et al. 2014],
[Chen et al. 2013], [Kirchner and Fridrich 2010] and [Zeng et al. 2014] were proposed
to detect median filtering. In particular, [Zhang et al. 2014] uses higher order Local
Ternary Patterns of an image as features to detect if a given image is median filtered
or not. Whereas [Kang et al. 2013] fits an autoregressive model to median filter resid-
ual to determine if an image is median filtered or not. In [Chen et al. 2013], the authors
introduced Global probability features of empirical Cumulative Distribution Function
and Local Correlation features to perform blind median filter detection. M. Kirchner
and J. Fridrich in [Kirchner and Fridrich 2010] propose features such as streaking
artifacts and SPAM (Subtractive Pixel Adjacency Matrix) for the detection of median
filtering and median filtering involving JPEG compression respectively.

However, in spite of obtaining a good performance by the algorithms mentioned
above, the experiments do not deal explicitly with multiple format conversions such
as JPEG to TIFF and TIFF to JPEG. Also, all the above techniques consider linear or
non-linear filtering independently since they explicitly deal with the statistical differ-
ences caused by each type of filter. For example, authors in [Zhang et al. 2014] propose
to detect only median filtering and not any other enhancement operation. Further,
JPEG post processing of filtered images is evaluated only for quality factors 70 and
90 while JPEG double compression is not deeply investigated. The robustness of these
algorithms against anti-forensic techniques is also not evaluated. Authors in [Stamm
et al. 2013] give a review of various forensic techniques proposed in the last decade.
It is shown that the algorithms that detect enhancement operations like median fil-
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Fig. 1. Block diagram of a typical forgery pipeline

tering or linear filtering are specific to the type of filter applied. i.e. filtering detection
techniques in general deal with linear or non linear filtering independently.

Certain techniques like [Cao and Kot 2012] and [Qiu et al. 2014] consider multiple
enhancement operations under some constraints. For example, authors in [Cao and
Kot 2012] considered various kinds of manipulations including contrast enhancements
in addition to linear and non linear filtering, obtaining a good accuracy using Fusion
boost ensemble classifier. But, the data set considered is very small and the effect of
format conversion and compression before and/or after the enhancement are not inves-
tigated. Similarly, in [Qiu et al. 2014], the authors experimented steganalysis models
for enhancement detection considering filtering, contrast enhancement and compres-
sion. They evaluated popular steganalytic features and their application in forensics
[Qiu et al. 2014]. However, compression was considered as a separate operation rather
than a post/pre processing operation for other enhancements which is usually the case.

In order to overcome the aforementioned limitations, we propose an efficient tech-
nique1 to detect images that are enhanced using operations such as Gaussian, Lapla-
cian, average, sharpening or median filters as part of the forgery performed. The algo-
rithm is observed to be able to classify the type of filter applied as low pass, high pass
or median with a high accuracy. Also filtering detection performance is evaluated with
low resolution images of dimension as low as 64 × 64. This helps in localization of the
filtered part of an image [Kang et al. 2013]. In our experiments, image formats such
as TIFF and JPEG are considered both before and after enhancement. Experiments
involve filtered JPEG images that are saved as TIFF, filtered uncompressed TIFF im-
ages that are saved in JPEG format and filtered JPEG images double compressed
while saving it in JPEG format again.

The block diagram of the proposed forensic technique is given in Fig 2. The tech-
nique is based on the principle that, when compression and filtering are applied, the
spatial correlation of the compression noise in the image gets perturbed. Spatial do-
main compression noise is shown to be correlated by [Robertson and Stevenson 2005].
It can also be seen from Fig 3 that the average power spectral density of compression
noise extracted from 300 unfiltered images follows low pass characteristics. We use
the quantization noise model proposed in [Robertson and Stevenson 2005] that char-
acterizes the spatial domain compression noise as a zero mean multivariate Gaussian
distribution. We evaluate the performance of our algorithm using two different natural
image models as proposed in [Fan et al. 2013] and [Li and Singh 2009] for quantization
noise extraction. The noise thus extracted is modelled as a first order spatial ergodic
Markov chain which has been proven to be an effective feature ([Chen et al. 2008],
[Liu et al. 2011], [Ravi et al. 2014], [Pevny et al. 2010], [Fridrich and Kodovsky 2012]).
These features are used to detect whether a given image has been filtered or not. In
addition, we evaluate the performance of these features in classifying the type of fil-
ter applied and in detecting filtering in low resolution images for localization. The
results are provided using standard UCID (Uncompressed Image Database) [Schaefer

1A preliminary version of this work is accepted in IEEE ICIP 2015 conference [Ravi et al. 2015].
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and Stich 2004], NCID (Never Compressed Image Database) [Liu et al. 2010], Dres-
den [Gloe and Bohme 2010] and BOSS (Break Our Steganographic System) [Bas et al.
2011] image databases. Our contributions are as follows:

— We introduce a modified Huber Markov Random Field (HMRF) prior model which can
incorporate the effect of blocking artifacts when an image undergoes compression. We
also evaluate the impact of the modified prior on the detection accuracy.

— We propose quantization noise based transition probability features extracted from
quantization noise to detect whether an image is filtered or not. Experimental setup
comprises of a wide gamut of images of both uncompressed TIFF and, single and dou-
ble compressed JPEG formats. The algorithm is shown to be effective in classifying
the type of filter applied and also in detecting filtering in low resolution images for
localization.

— The proposed method is compared with state-of-the-art filtering detection algorithms
([Conotter et al. 2013a] and [Zhang et al. 2014]) and is shown to perform better in
most cases. Also, it is compared with popular feature extraction algorithms such
as [Kirchner and Fridrich 2010], [Chen and Shi 2008], [Pevny and Fridrich 2007],
[Kodovsky et al. 2012], [Cozzolino et al. 2014] and [Verdoliva et al. 2014] to show
that the proposed technique gives better performance in filtering detection.

— Proposed technique’s counter anti-forensic effectiveness is shown by testing it against
state-of-the-art compression [Fan et al. 2013] and median filter [Fan et al. 2015] anti-
forensic methods.

To the best of our knowledge, we believe this is the first image forensics algorithm
which uses compression noise based transition probability features for image filtering
detection, that targets various filters (linear and non-linear) for different image for-
mats (JPEG and TIFF) 2 and forgeries. In addition, it is also robust against popular
anti-forensic techniques. The notation adopted throughout this paper adheres to the
following conventions.

— Scalar variables are denoted by lower case letters.
— Constants are denoted either by non-bold upper case letters or by greek symbols

unless otherwise mentioned.
— Vectors are denoted by lower case bold letters.
— Matrices are denoted by upper case bold letters.
— AT denotes transpose of matrix A.
— E[·] denotes the expected value operator while Q[·] denotes the quantization operator

defined as q × round(·/q) where q is the quantization factor.
— p(a) denotes probability of a and exp(a) denotes exponential of a.
— Â denotes estimate of A
— S denotes a closed set while C denotes a set of cliques. N (a|µ, σ2) denotes that a is

normally distributed with mean µ and variance σ2.
— ai is a scalar that denotes ith element of the vector a.
— Kp denotes pth matrix of a set of matrices {K1,...,K64} while I denotes the Identity

matrix.

The rest of the paper is organized in the following way. Section 2 gives the related
works that discusses the noise model and the prior models used while section 3 gives
the modification of HMRF prior and then the actual proposed scheme of noise and
feature extraction for both the priors. Section 4 contains the justification and evalua-
tion of parameters and models used in our experiments. In Section 5 the experimental
setup and results obtained for the proposed method for filtering detection are detailed.
In Section 6, the advantages of this method over state of the art forensic algorithms

2JPEG is lossy compression, while TIFF is uncompressed.
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Fig. 2. Block diagram of the forensic analysis pipeline for authentication

Fig. 3. Power Spectral Density of compression noise extracted from unfiltered images

and features are evaluated. It also gives the performance of the proposed technique
in localizing filtering and detecting filtering when more than one filter is applied. In
section 7 we discuss the Counter anti-forensic effectiveness of our method. Section 8
gives an outline comparison of the performance using the two image priors proposed
while Section 9 concludes the paper.

2. PRELIMINARIES
Let I be a natural image scene in spatial domain of size M ×N . Let z be the vectorized
form of a 8 × 8 block of the image I in spatial domain i.e. z = {zi} ∀ i ∈ [1, 2, · · · , 64]
where zi represents each element of the vector, while y be the vectorized form of the
corresponding block in DCT domain. Let H be the DCT matrix and G the Kronecker
product of H with itself. Then the DCT operation during compression can be repre-
sented as,

y = Gz⇒ z = GTy (1)

In case of lossy compression, the quantized image block in DCT domain is quantized as
yq = Q[y]. The corresponding quantized image block in spatial domain for compression
is given by zq = GTyq.

2.1. Quantization Noise Model
In lossy compression, some information is lost due to the rounding process that follows
quantization. Quantization error in the spatial domain and frequency domain can be
defined as the difference between the unquantized block and quantized block [Robert-
son and Stevenson 2005].

ez = zq − z and ey = yq − y (2)

The main parameter that is needed to model this quantization noise is the variance of
individual frequency coefficients and the covariance matrix. The covariance matrix of
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error in the spatial domain can be represented as

Kez = E[(zq − z)(zq − z)T] = GTKeyG (3)

where Key = E[(yq − y)(yq − y)T]. Thus, the spatial domain quantization error can
be represented as,

p(ez) =
1

(2π)D/2|Kez |1/2
exp

(
− 1

2
eT

z Kez

−1ez

)
(4)

where D = 64 is the number of dimensions of the multivariate Gaussian. The proba-
bility distribution derived in eq (4) gives the quantization noise model. This zero mean
multivariate distribution models the quantization noise for each non overlapping block
of an image. Since JPEG compression is a block wise operation, we assume that the
quantization noise of all the blocks are independent to each other.

2.2. Markov Random Field Prior
Markov Random Field (MRF) has been widely used to model the statistical properties
of natural images [Li 1995]. The conditional distribution for any pixel v = (i, j) in an
image I can be written as

p(Iv|IC−v) = p(Iv|Nv) (5)

where Nv is the local 8-connected neighborhood at v and C∈ Nv is a set of sites in the
image. Using the MRF, we can compute the joint probability distribution of a block z
of a natural image given by Gibbs measure as,

p(z) =
1

β
exp

(
− λH

∑
c∈C

U(zc)

)
(6)

where, β is a normalization constant, U(·) is the energy function and λH is a free
parameter. These parameters will be explained in section 3.1.

2.3. Gaussian Mixture Prior
Learning based image priors have been introduced as good priors for image restoration
tasks [Zoran and Weiss 2011]. In the proposed method, we use a Gaussian Mixture
Model (GMM) based prior from [Fan et al. 2013]. The probability distribution that
models a natural image patch z of an image I is given as,

p(z) =
Mc∑
ν=1

πνN (z|µν ,Σν) (7)

where πν are the mixing weights for each mixture component ν, Mc is the total num-
ber of mixture components and µν and Σν are the corresponding mean and covariance
matrix respectively. The means, covariance matrices and mixing weights are learned
using Expectation Maximization (EM) algorithm as explained in section 3.3.

3. PROPOSED SCHEME
Given an image, the quantization noise model and the image prior models described in
section 2 are used to extract quantization noise. The extracted noise is then modelled
as a first order spatial Markov chain to extract transition probability features. The
transition probability features are used to detect if a given image is manipulated or
not. We first explain the modified HMRF image prior model.
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3.1. Modified Huber Markov Random Field Prior
We propose a modified Huber Markov Random Field model derived from the joint dis-
tribution derived in eq (6). The energy function in the distribution is given by Huber
function as,

p(z) =
1

β
exp

(
− λH

∑
c∈C

ρT (d
t
cz)

)
(8)

where, dt
c extracts the difference between a pixel and its 8 immediate neighbours in

z as given later in eq (10), ρT (·) is the Huber function defined for clique c ∈ C as,

ρT (u) =

{
wu2, |u| <= T,

w(T 2 + 2T (|u| − T )), |u| > T

w =

{
1 ∀ zu : u 6∈ S,
γ otherwise

(9)

where w is introduced as a weight parameter to incorporate the effect of compres-
sion on an image and T is a threshold. The parameters λH , γ and T are empirically
determined as given in section 5. S is the set of pixels which belong to the border pixels
in each 8× 8 block. The prior model degenerates to,

p(z) =
1

β
exp

(
− λH

Mb−1∑
m=0

∑
n∈Nm

ρT (zn − zm)

)
(10)

Where Nm is the index set of neighbors for the mth pixel, and Mb is the number
of pixels in the block. The probability distribution described above gives the modified
HMRF prior model of a natural image scene.

3.2. Noise extraction using modified-HMRF image prior
We use Bayesian maximum a posteriori (MAP) estimation for extracting the compres-
sion noise using modified HMRF prior model. The MAP criterion is,

ẑ = argmax
z

p(z|zq) = argmax
z

p(z)p(zq|z) (11)

where ẑ is the final estimate for the block after removing the compression noise. The
p(zq|z) term in the above equation is a Gaussian random variable with mean z and
auto covariance Kez . The covariance matrix Kez of the noise model is derived in the
following manner. Let an individual DCT coefficient be p and the quantization step size
be q, then we can write, pq = round(p/q). Assuming that pq is distributed uniformly
over the interval [p − q/2, p + q/2] [Robertson and Stevenson 2005], the variance of
the quantization error would be q2/12. Since the DCT coefficients are independent, the
DCT domain covariance matrix will be a diagonal matrix,

Key =


q1

2

12 0 · · 0

0 q2
2

12 · · 0
· · · · ·
· · · · ·
0 0 · · q64

2

12

 (12)

where {q1, q2, ..., q64} are derived from the quantization table. Covariance matrix Kez

is obtained from eq (3) using the above derived DCT domain covariance matrix Key .
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Now eq (11) can be written as

ẑ = argmax
z

{
1

β
exp

(
− λH

Mb−1∑
m=0

∑
n∈Nm

ρT (zn − zm)

)
(

1

(2π)D/2|Kez |1/2
exp

(
− 1

2
eTz Kez

−1ez

))} (13)

In order to maximize eq (11), the arguments of exp(.) in eq (13) is minimized us-
ing gradient descent algorithm. Denoting the estimate of z at iteration t as z(t), the
gradient descent update for the next iteration would be,

z(t+1) = z(t) − ζ(t)ψ(z(t)) (14)

where, ζ(t) is a step size that ideally reduces the objective function as much as possible.
The gradient ψ(z) of the objective function is given as,

ψ(z) = λ∇φ1(z) +∇φ2(z) (15)

where the individual terms are obtained from the eq (13) as,

φ1(z) =
∑
c∈C

ρT (d
t
cz)

φ2(z) =
1

2
(z− zq)

TKez

−1(z− zq)

(16)

We use a constantly decreasing step size ζ starting from 0.1 and reduced at every
iteration by a factor of 0.05 × ζ. The maximum number of iterations is set at 500 and
tolerance level for the change in cost is set at 0.0001. The algorithm terminates if the
tolerance level or maximum iteration is reached. λ in the above equation determines
the amount of smoothness and is empirically determined [Robertson and Stevenson
2005]. Combining all the resulting denoised blocks ẑ, we generate the denoised image
Î. The compression noise Nc is obtained as Nc = I− Î.

3.3. Noise extraction using GMM image prior
We use the Expected Patch Log Likelihood (EPLL) method introduced in [Zoran and
Weiss 2011] where prior information about the image to be restored is used for restora-
tion as

EPLLp(Iq) =
∑
i

log p(ΩiIq) (17)

where Ωi is the matrix that extracts the ith patch from the image Iq out of all
the overlapping patches, while logp(ΩiIq) is likelihood that the ith patch is under the
prior p and λG a regularization parameter. We divide all the overlapping patches to
64 types/sets of patches Sp ∈ {S1,S2, ...,S64}, according to their relative position with
respect to JPEG blocks ([Fan et al. 2013]). Also, the prior p(Ωiz) is replaced with the
GMM prior introduced in section 2.3 and if at any point, a particular patch is repre-
sented as z, the optimization problem using eq (17) and compression noise model from
eq (4) will become

Î = argmin
z

{
λG
2

64∑
p=1

∑
Ωi∈Sp

(Ωiez)
TK−1p (Ωiez)−

∑
i

log p(Ωiz)

}
(18)
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where Ωi is a matrix extracting the i-th patch from the noise ez, and Kp is the
covariance matrix for modeling the quantization noise of the p-th group of patches. Kp

is obtained by training real quantization noise in the following way. 300 random images
from the UCID [Schaefer and Stich 2004] database are compressed with quality factor
of the image under consideration and subtracted from the respective original images
to obtain the actual quantization noise. This noise is used to extract 6016 8× 8 patches
from each image (94 patches of each of the 64 types, 300×94×64 patches totally). These
noise patches are then used to get the 64 covariance matrices Kp corresponding to the
types of patches. The term log p(Ωiz) gives the expected patch log likelihood i.e.

log p(Ωiz) = log

( Mc∑
ν=1

πνN (Ωiz|µν ,Σν)

)
(19)

The prior model p(Ωiz) is obtained by training 338 × 6000 overlapping patches of
natural images from the UCID database. EM algorithm is used to train 200 mixture
components according to eq (7). The denoised patch corresponding to the noisy patch
is obtained by an approximate MAP procedure [Zoran and Weiss 2011] using Wiener
filter solution for νmax

thmixture component as

ẑp = (Σνmax
+ K2

pI)−1(Σνmax
zq + K2

pIµνmax
) (20)

where νmax = argmaxν πν is the mixture component that has the highest conditional
mixing weight, i.e. πν = p(ν|zq) and I is the identity matrix. Then Σνmax

will be the
covariance matrix of the νmax

th component of the prior model whereas Kp is the noise
covariance matrix trained for the p-th type of patch Sp. An estimate ẑp for each type of
patch is obtained by the MAP approximation and then combined as given in eq (18) to
get the image estimate Î. The compression noise Nc is obtained as Nc = I− Î.

3.4. Transition Probability Feature extraction
The noise Nc extracted from a JPEG compressed image can be modeled as a first or-
der ergodic spatial Markov chain such that, p(Xt+1 = x|X1 = x1, X2 = x2, ..., Xt =
xt) = p(Xt+1 = x|Xt = xt), where Xt+1 is the present state and (X1, X2, ..., Xt) are the
previous states. The features that we use to characterize this noise is Transition Prob-
ability Matrix (TPM). TPM characterizes a Markov chain by providing the probability
of transition between each state. This is extracted by modeling the elements of the dif-
ference array (gradient along eight directions) as states. It was found experimentally
that eight directions rather than just four, gave a better result.

Difference arrays are obtained from the noise matrix as shown in eq (21). Represen-
tation along the right (East → ) direction is shown hereafter and those along other
directions (West← , North ↑ , South ↓ , North East↗ , North West↖ , South East↘ ,
South West↙ ) can be obtained in a similar way.

D→c (i, j) = Nc(i, j)−Nc(i, j + 1) (21)

where i = 1, 2...,M and j = 1, 2..., (N − 1) are indices representing each element in
the matrix. Values in each difference array D→c are rounded off to the nearest integer
to get integer value states as given in eq (22) where q = 1. It is then truncated between
−Tr to Tr as shown in eq (23) before extracting the transition probabilities.

D̃→c (i, j) = round(D̃→c (i, j)/q) (22)
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D̃→c (i, j) =


−Tr,D→c (i, j) < −Tr
+Tr,D

→
c (i, j) > +Tr

D→c (i, j), otherwise

(23)

This provides us with (2Tr + 1) different states to model the Markov chain. Now,
TPM is constructed in each direction from each difference array as follows,

p→u1,u2
= p(D̃→c (i, j + 1) = u1|D̃→c (i, j) = u2) (24)

where, u1, u2 ∈ [−Tr, Tr], and u1, u2 ∈ Z. Similarly, the probabilities can be obtained
for other directions. This gives us (2Tr + 1)× (2Tr + 1) transition probabilities for each
difference array. The TPMs along the eight directions are concatenated to get the final
feature vector (2Tr + 1) × (2Tr + 1) × 8 and this remains the same irrespective of the
size of the image.

4. JUSTIFICATION OF PARAMETERS AND MODELS
First we define values for the parameters used in our models and experiments with
plausible explanation for the same. We then justify the usage of compression noise as
a metric to detect the presence of filtering.

The Huber Markov Random Field model introduced in the section 2.2 is modified to
introduce the weight parameter w. Experiments are performed with different weights
and w is chosen to be 5 for high accuracy. Also, λH in eq (13) is set to 0.1 while γ and T
in eq (9) are set to 5 and 10 respectively. These are empirically determined to give the
best results. In our model Tr in eq (23) is set to 15 for HMRF prior based experiments
and to 8 for GMM prior based experiments as 95% of the values in the difference array
of noise are in [-15, 15] and [-8, 8] respectively. This gives a 7688 3 and 2312 dimensional
feature vectors for HMRF and GMM prior based techniques. Also, experiments were
performed with values between 3 to 30 for Tr and it was found that saturation in
performance reached after 15 for HMRF and 8 for GMM. Moreover, for values lower
than the above mentioned Tr, the accuracy in performance drops significantly.

In order to analyze the difference between the TPM features of filtered and unfil-
tered images, we give a justification by modeling low pass filtering as a linear process.
In the following, we analyze the effect of filtering for GMM prior model and a similar
analysis can be done for HMRF model or for other filters. He et al. proposed a linear
filtering model in [He et al. 2013] as given in eq (25).

zfi = akIi + bk,∀i ∈ Ck (25)
where i is the index of a pixel, k is the index of a local square window Ck and zfi is
output pixel [He et al. 2013]. Here, ak and bk are a function of local neighborhood Ck of
the input image p and guidance image I. Similarly, the linear operation that denotes
low pass filtering can be denoted as,

zfi = ai × zi + bi ∀i ∈ C (26)
where we have removed the dependency of the window on k as the filter is spatially
invariant. Here, zi is the pixel being modified. ai is a function of local neighborhood C of
the input image. Since the local neighborhood is dynamic in nature, ai can be modeled
as a random variable. Due to round-off of zfi to nearest integer, we introduce bi which
can model the noise incurred in the rounding-off. In order to make the computation
tractable, we assume that ai and bi are independent Gaussian random variables with

3It is to be noted the low dimensional linear projection of the feature set using PCA or by averaging reduced
the efficiency of the algorithm. Hence the entire feature set it used for classification.
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mean µa and 0 respectively, and, variance σ2
a and σ2

b respectively. In eq (26), the first
term is a product of two independent Gaussian random variables. The pdf of this term
is given by [Ware and Lad 2003]∫ ∞
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e
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)√

2πσ2
a

da (27)

Towards this, we analyze the pdf of two independent Gaussian random variables and
eq (27) can then be treated as sum of product of independent Gaussian random vari-
ables, zi and ai. However, a closed form expression for eq (27) would be very difficult to
compute. Therefore, we analyze the Moment Generating Function (MGF) in order to
check if the pdf of zf can still be GMM. In [Ware and Lad 2003], it is shown that the
MGF of product of two independent Gaussian random variables is,

Mzf (t)→ (1− σ2
aΣkt

2)−1/2 (28)

This means the MGF of zf does not follow a Normal distribution and consequently
it is not a GMM distribution. Since, we assume a GMM prior model for images, the
distribution of filtered images is different than that of unfiltered images. It would
be reasonable to assume that the compression noise and TPM generated from noise
of these images would also be different in both the cases which is supported by the
experimental results. Also, the transition probability features used in the experiments
are known to be effective in capturing neighborhood information from previous works
([Ravi et al. 2014], [Pevny et al. 2010]). In Fig 4, the average of histograms of TPM
features extracted from unfiltered, low pass, high pass and median filtered images
are given. Distinction in the TPM histogram can be seen to be significant enough to
support the experimental results. This distinction is visible when the experiments are
performed using either of the image priors (refer Table III). It can be observed from Fig

Fig. 4. Average histogram of TPM extracted from compression noise using Top row: GMM prior of unfil-
tered, low pass, median and high pass (left to right) filtered images Bottom row: HMRF prior of unfiltered,
low pass, median and high pass (left to right) filtered images.

5 that the power spectral density of compression noise extracted from filtered images
show characteristics of the applied filter. This demonstrates that compression noise is
a good measure for detection and classification of the applied filter.

5. EXPERIMENTAL SETUP AND RESULTS
We consider 1338 uncompressed images from the UCID database [Schaefer and Stich
2004] along with 1262 random Never compressed images of 5150 images of the NCID
database [Liu et al. 2010]. All the 1338 UCID images are cropped to 256× 256 from the
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Fig. 5. Average Power spectral density estimate of compression noise using Top row: GMM prior from
unfiltered, low pass, median and high pass (left to right) filtered images Bottom row: HMRF prior from
unfiltered, low pass, median and high pass (left to right) filtered images.

center, matching the size of NCID images (Though other dimensions can be used as it
will give the same dimensional feature, we use this to save time in processing). We also
take 400 single compressed images captured using different digital cameras from the
Dresden image database [Gloe and Bohme 2010]. This together makes 3000 authentic
images of size 256 × 256 called the ‘original set’ (2600 uncompressed TIFF images and
400 single compressed JPEG images). Another 1000 random NCID images not present
in the previous 1262 are single compressed with a randomly chosen factor qf1 ∈ (30, 90],
qf1 ∈ Z. This set is called the ‘splicing set’. We generate two classes of images for our
experiments from these sets as given in Table I. In the experiments, a JPEG/TIFF
image is forged, enhanced and then saved in either JPEG or TIFF format following a
typical forgery pipeline. When the given final image is in uncompressed TIFF format,
it is JPEG compressed, referred in the Table I as ‘Forensic end’. The parameters in the
table are to be read as follows, qf1 ∈ (30, 90], qf2 ∈ {30, 40, 50, 60, 70, 80, 90} as in the
Table III, ‘copy-move’ forgery is of size s × s where s ∈ (50, 130], s ∈ Z and ‘splicing’
forgery is performed by copying a s × s patch of an image from ‘splicing set ’ on to the
image to be spliced. Compression noise and TPM features are extracted as given in
section 3 (for both HMRF and GMM priors separately) from 6000 (3000 unfiltered and
3000 filtered) images in total for each quality factor qf2 as in the Table III.

Table I. Various image manipulation pipelines considered in experiments - To be read from left to right

CLASS IMAGE CAPTURED OPERATIONS BY ADVERSARY FORENSIC END
(No. Of Images) Manipulation Enhancement Saved as

UNFILTERED TIFF (1000) & – – TIFF/JPEG-qf2 JPEG (qf2)
JPEG-qf1 (2000)

FILTERED TIFF (1500) & copy-move / splicing filtering from Table II TIFF/JPEG-qf2 JPEG (qf2)
JPEG-qf1 (1500)

Table II. Enhancement techniques performed as part of forgery

TYPE KERNEL SIZE VALUE 4 TOTAL

Average (3× 3, 5× 5) – 2
Gaussian (3× 3, 5× 5) σ − 0.5, 1 4
Median (3× 3, 5× 5, 7× 7) – 3

Laplacian (3× 3) α− 0.1, 0.2 2
Unsharp (3× 3) α− 0.2, 0.4 2
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Fig. 6. ROC curve for the proposed method

For further experiments we define the following terms. ‘Image manipulation
pipeline’ is defined as the pipeline of processes that an image goes through during
manipulation. ‘Forensic compression’ means that, compression is performed as part of
the proposed algorithm and not as part of the manipulation.

5.1. Filtering Detection
The first set of experiments are carried out to detect filtering in an image. Out of the
6000 images per quality factor, 1500 images from authentic class and 1500 images from
filtered class are used for training while the remaining 3000 images are used for test-
ing. We use Radial Basis Function (RBF) kernel based binary classification Support
Vector Machine (SVM) from [Chang and Lin 2011] libsvm library. Grid search is per-
formed for determining the parameters that give the best average cross validation 5

accuracy which is provided as (TPR+TNR)/2 in Table III where TPR is the True Pos-
itive Rate and TNR is the True Negative Rate. It can be observed from the table that

Table III. Detection accuracy for various quality fac-
tors (qf2)

qf2 HMRF PRIOR (%) GMM PRIOR (%)

30 80.45 78.65

40 82.51 79.20

50 78.55 80.00

60 81.85 80.60

70 80.93 81.00

80 84.75 82.06

90 82.50 83.50

the classification accuracy between an unfiltered and a filtered image is above 80% for
most cases in both the prior models. In Fig 6 the ROC curve of classification using
HMRF prior and GMM prior for quality factor 90 is given. High TPR is achieved for
small FPR in spite of the various ‘real world situations’ replicated in the experiments.
It can be seen that both HMRF prior and GMM prior based experiments give similar
performance.

4Values are parameters used in MATLAB for specific filters.
5All the accuracy values reported in this paper are computed as the average of 5 experiments using different
random combinations of training and testing data for the best cost and gamma value determined by grid
search for RBF kernel.
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5.2. Filter classification
The next set of experiments are performed to identify the type of filter applied. In
order to do this, we generate four classes of images namely unfiltered, median filtered,
low pass filtered and high pass filtered. We generate 650 images for each class from
2600/3000 total images of the ‘original set’. Now, SVM is trained for one vs all multi
class classification using 50% of samples from each class. Detection accuracy for each
class using noise extracted from GMM prior and HMRF prior are given in the Table
IV. The image manipulation pipeline used in this set of experiments is modified from
[Conotter et al. 2013a] as JPEG (qf1) filtering−−−−−−→TIFF to TIFF/JPEG (qf1) filtering−−−−−−→TIFF
incorporating TIFF images in the source too. Since the final image is TIFF, it is JPEG
compressed at the forensic end with quality factor 90. The accuracy is given in Table
IV for different qf1 like given in [Conotter et al. 2013a]. It can be seen from the table
that the accuracy in positively identifying a median filter or an unfiltered image is
high using both the priors. Also, HMRF prior based experiments give better accuracy
while detecting low pass filtering than high pass while GMM prior classifies high pass
filtered images better than low pass filtered images.

Table IV. Classification accuracy for various quality factors (qf1)

QF (qf1) ACCURACY FOR HMRF PRIOR (%) ACCURACY FOR GMM PRIOR (%)

Unfiltered Low pass High pass Median Unfiltered Low pass High pass Median

30 88.92 84.31 82.46 94.77 93.23 80.00 88.62 95.08

40 88.92 85.54 79.08 93.85 90.15 82.15 88.00 95.69

50 84.92 85.85 79.69 94.15 89.23 85.23 84.62 93.85

60 87.08 82.15 77.54 95.38 89.85 82.46 86.77 95.08

70 86.15 87.08 80.62 94.77 90.77 83.08 85.85 96.31

80 88.62 84.62 83.08 95.69 90.77 82.46 86.77 96.62

90 89.54 83.08 85.54 96.62 89.54 82.87 88.00 96.00

6. PERFORMANCE EVALUATION AND COMPARISON
To evaluate the performance of the proposed technique we compare it with state of the
art filtering detection algorithms and popular feature extraction algorithms. Also, the
efficiency of this algorithm in detecting filtering on low resolution images is discussed.
The details of the experiments performed and the detection accuracy achieved are
given below.

6.1. Comparison with filtering detection algorithms
We compare the efficiency of the proposed technique for image manipulation pipelines
considered in [Conotter et al. 2013a] and [Zhang et al. 2014]. The database of filtered
and unfiltered images are created using the image formats and filters mentioned in
these papers and the proposed algorithm is applied over the created database.

6.1.1. Linear filtering detection. We perform an experiment with 2000 images from the
‘original set’ to compare our results with state of the art [Conotter et al. 2013a] linear
filtering detection technique. The ‘Filtered class’ of 1000 images is obtained by follow-
ing the manipulation pipeline, JPEG (qf1) filtering−−−−−−→TIFF as in [Conotter et al. 2013a].
To implement our algorithm for this pipeline, forensic compression of the final TIFF
image is done with JPEG quality factor 90. Another 1000 images from the ‘Unfiltered
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Fig. 7. Left: Detection accuracy comparison for various quality factors (qf1) of JPEG compression, Right:
ROC curve using the proposed method on image manipulation pipeline (refer section 6.1.1) as given in
[Conotter et al. 2013a] for qf1 = 30.

class’ as obtained for the original experiments for quality factor 90 constitute the un-
filtered class for this experiment. Classification is done using 50% (500 authentic, 500
manipulated) samples for training and the rest for testing. The accuracy achieved in
this experiment using the proposed algorithm using both HMRF and GMM priors and
that of [Conotter et al. 2013a] for each qf1 is given in Fig 7. Accuracy is found to be
higher for all qf1 when compared with [Conotter et al. 2013a]. The ROC curve for lin-
ear filtering detection using the proposed method is given in Fig 7. It is seen from the
Fig 7 that very high TPR of above 0.9 is achieved for a FPR of 0.05 when the proposed
method is implemented on experimental pipeline considered in [Conotter et al. 2013a]
for qf1 = 30. This also is the case with both the image priors.

6.1.2. Median filter detection. Another experiment to detect only ‘median filtering’ is
performed using 2000 images. The ‘Filtered class’ here is obtained using the manip-
ulation pipeline TIFF medianfilter−−−−−−−−→JPEG (qf2) as given in [Zhang et al. 2014] where
qf2 = {70, 90}. Experimental results are given only for qf2 = {70, 90} as results for

Table V. Detection accuracy for median filtering using [Zhang
et al. 2014] and proposed technique

MEDIAN FILTER SIZE 3× 3 5× 5

QUALITY FACTOR (qf2) 90 70 90 70

[Zhang et al. 2014] (%) 98 94.5 98.5 97.5

Proposed HMRF prior (%) 99 95.25 98.5 96.5

Proposed GMM prior (%) 98 88 97.8 96

only those quality factors are available in [Zhang et al. 2014]. 1000 images constitute
the ‘Filtered class’ for each qf2 and kernel size of the median filter.‘Unfiltered class’ for
the corresponding qf2 contains 1000 images from the ‘Unfiltered class’ of the original
experiments. Detection accuracy is given in Table V for each qf2 and median filter ker-
nel using the proposed method and that of [Zhang et al. 2014]. The proposed method
gives better or comparable performance in all the cases. In Fig 8, ROC curve for clas-
sification of 3 × 3 median filtering of JPEG images compressed with quality factor 90
using proposed method is given. The TPR is 0.97 for a very low FPR of 0.02 proving
the efficacy of the proposed technique for median filter detection.

6.2. Comparison with popular features
We evaluate and compare the proposed algorithm with popular feature extraction al-
gorithms like Chen et al.’s inter and intra block markov features [Chen and Shi 2008],
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Fig. 8. ROC curve using the proposed method on image manipulation pipeline (refer section 6.1.2) as given
in [Zhang et al. 2014] for qf2 = 90.

T. Pevny and J. Fridrich’s features as described in [Pevny and Fridrich 2007], Kodovsky
et al.’s features on compact rich models for steganalysis as given in [Kodovsky et al.
2012], SPAM [Kirchner and Fridrich 2010] features, residual based local descriptors
given in [Cozzolino et al. 2014] and camera-based co-occurrence features as proposed in
[Verdoliva et al. 2014]. These features are named as proposed GMM, Chen, CC-Pev, CF,
SPAM, ResF and CamF respectively for usage in this paper. Since SPAM and CamF
features have considerably lesser dimensionality compared to the proposed GMM, we
also perform experiments after increasing the dimension of both SPAM and CamF fea-
tures to 2662 and 3281 obtained by using threshold values of 5 and 4 respectively. It
is to be noted that this number is higher than the proposed GMM and these extended
features are named as SPAMext and CamFext. We use the BOSS database consisting
of 10000, 512×512 images for this experiment to show that the proposed GMM features
do not overfit the data. The high cardinality of the dataset is used specifically to show
that the proposed algorithm is not affected by large number of samples. Since CamF
features are camera based, we use UCID database for the evaluation of these features
as the entire UCID database is from the same camera. Also we resort to ROC curves
for comparison with this algorithm as mentioned in the paper [Cozzolino et al. 2014].
We evaluate the general filtering detection performance of these features along with
the proposed method on a dataset of 5000 unfiltered and 5000 filtered 256× 256 images
created from the BOSS database.

Table VI. Detection accuracy for various quality factors using the pro-
posed scheme and popular features described in section 6.2

Features \QF 30 60 90

Proposed GMM 86.5 89.2 93.4

SPAM [Kirchner and Fridrich 2010] 78 82.6 90.4

Chen [Chen and Shi 2008] 77.8 83.4 89.5

CC-Pev [Pevny and Fridrich 2007] 79.4 84.2 90.2

CF [Kodovsky et al. 2012] 82.2 85.4 90.4

ResF [Cozzolino et al. 2014] 82.14 83.45 85.56

SPAMext [Kirchner and Fridrich 2010] 80.6 83.43 91.2

It can be interpreted from Table VI that the proposed method gives better perfor-
mance than popular features in all cases. For CamF and CamFext features, the ROC
curve is plotted as mentioned in the paper [Cozzolino et al. 2014] in Fig 9. Also, ROC
curves of all other features are given in Fig 9 as plotted using MATLAB’s inbuilt per-
fcurve function which calculates TPR and FPR at various threshold values based on
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Fig. 9. Left: ROC curve using the proposed method, Chen features [Chen and Shi 2008], CC-Pev features
[Pevny and Fridrich 2007], CF features [Kodovsky et al. 2012], SPAM features [Kirchner and Fridrich 2010],
Residual features [Cozzolino et al. 2014] and Camera based features [Verdoliva et al. 2014] on general
filtering detection for quality factors 30. Right: ROC curve using the proposed method to detect filtering
when two random filtering operations are performed on the image.

the scores produced by the respective classifier for quality factor 30. For example, the
TPR of classification for quality factor 30 for an FPR of as low as 0.1 for the proposed
method is 0.86. The TPR using CF features is 0.82, CC-Pev features is 0.79, Chen fea-
tures is 0.77 while SPAM achieves 0.78. ResF has a TPR of 0.8 and SpamExt gives
0.8 for the same FPR. Also, CamF and CamFext achieves a TPR of 0.75 when FPR
is around 0.35. More importantly, comparison with SPAMext and CamFext whose di-
mensionality is greater than the proposed method, shows that the proposed technique’s
good performance is not entirely because of the high dimensionality. We attribute it to
the effectiveness of compression noise in characterizing the modifications the image
has undergone. Also, CamF features make an important assumption that the cam-
era with which the image under consideration was taken, is available with us as it
is camera based features. It is evident from the above comparisons that the proposed
technique is better in detecting filtering under less constraints compared to state of
the art filtering detection algorithms and popular forensic features. Also, even when
the dimension of similar features like SPAM is extended to what the proposed tech-
nique has, our algorithm performs better. It can be noted that the performance of the
proposed technique is better in Table VI compared to Sec 5.1. This might be because
the dataset considered in Sec 5.1 is a composite of three totally different databases
resulting in a larger variance. Also the cardinality of that dataset is relatively lesser
than what is considered for Table VI.

6.3. Detecting multiple operations
In order to check if the proposed technique can detect filtering when the image is
filtered more than once, we perform a separate experiment. We construct a filtered
images dataset from BOSS images like given in section 6.2, only half the images are
linearly filtered and the rest are non linearly filtered after their first filtering opera-
tion. We have now 5000 images that are filtered twice. We test these images with the
model from section 6.2 already trained for filtering detection. The results of the same
is given in Fig 9 as a ROC curve for multiple operation detection for QF 70 and QF 90.
TPR for both is above 0.9 for an FPR of 0.05 which shows that the proposed technique
is efficient in detecting filtering even when more than one filtering operation has been
done on the image.

6.4. Localization of Filtering
Detecting image manipulation in low resolution images and localized image windows
is necessary when only a part of the image being tested is forged or enhanced. For
example, a low pass filtered image can be cropped and pasted over an unfiltered image
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resulting in a forged image that is enhanced only partly. We test the performance of
our algorithm in detecting filtering in low resolution images. The pipeline followed is
similar to [Conotter et al. 2013a] as given in section 6.1.1. In addition to 256× 256, we
train and test on 128× 128 and 64× 64 patches cropped from the center of the original
images separately. The ROC curves for these experiments is given in Fig 10.

Fig. 10. Left: ROC curves of linear filtering detection for 256 × 256, 128 × 128 and 64 × 64 patches using
GMM image prior, Right: ROC curves of median filtering detection for 256 × 256, 128 × 128 and 64 × 64
patches using GMM image prior.

For 256 × 256 patches TPR is above 0.97 for FPR of 0.05. It can also be observed
that the performance of the algorithm reduces with the reduction in size but we are
still able to achieve a TPR of above 0.7 for FPR of 0.05 with 128 × 128 patches. TPR
reaches above 0.9 for a low FPR of just 0.1. This is significant in the case of localization
where overlapping 128 × 128 patches of an image can be tested to localize the filtered
part. However performance on 64 × 64 patches can be seen to be significantly low.
Similar experiment for median filtering detection [Kang et al. 2013] is performed as
given in section 6.1.2. The ROC curve of this experiment for various sizes is given in
Fig 10. Similar observation as that of general filtering detection is made except the
performance for 64× 64 patches is significantly reduced. The localization experiments
were all performed using GMM image prior. It is shown that the proposed algorithm
without any modification can be used for detecting filtering, classifying the type of
filter applied and localizing the filtered part to an extent.

7. COUNTERING ANTI-FORENSICS
With the advent of anti-forensic techniques such as [Kirchner and Bohme 2008], [Fan
et al. 2013] and [Fan et al. 2015], that hides any manipulation performed on an image,
it is inevitable to prove the robustness of new forensic algorithms against such tech-
niques. Since the proposed method does not directly depend on the DCT coefficients
or the image pixel intensity, it is robust against state-of-the-art anti-forensic algo-
rithms. These anti-forensic techniques drastically reduce the performance of forensic
algorithms like [Lai and Bhme 2011] and [Valenzise et al. 2011]. Therefore, it is neces-
sary to evaluate the performance of the proposed algorithm against these techniques.

7.1. JPEG anti-forensics
We implement a popular anti-forensic algorithm proposed by Wei Fan et. al. [Fan et al.
2013]. This algorithm implements intelligent image restoration technique based on
Gaussian Mixture prior model to denoise a compressed JPEG image. The removal of
compression artifacts and other subtle forgery artifacts make it difficult for general
double compression detection algorithms to detect manipulation [Fan et al. 2013].
We perform an experiment wherein 1000 random images from the UCID database are
forged and passed through anti-forensic pipeline involving denoising, applying QCS
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Fig. 11. Left: Lena JPEG image of quality factor 20 (PSNR-32.9625 dB) and Right: GMM restored version
(PSNR-33.2196 dB)

Table VII. Accuracy in detecting anti-forensically
forged images as manipulated, using HMRF
prior for noise extraction.

QUALITY ACCURACY (%)

FACTOR WITHOUT I.F. WITH I.F.

30 99.8 100

40 99.0 100

50 99.3 100

60 99.5 100

70 99.6 100

80 99.8 100

90 99.2 100

(Quantization Constrained Set) constraint and calibrating [Fan et al. 2013]. In Fig 11,
an example of a compressed image and its restored version using the GMM denoising
method in [Fan et al. 2013] is given. It can be seen that the GMM enhanced version has
very low blocking artefacts compared to the compressed version.There is a separate
Improved Forensics (I.F) step introduced in [Fan et al. 2013] that minimizes a cost
function to make the image, undetectable by detectors like [Lai and Bhme 2011] and
[Valenzise et al. 2011]. We implement this Improved Forensics step over the normal
anti-forensic operations for 100 images separately. HMRF prior based noise and TPM
features are extracted from the 1000 anti-forensically operated images without I.F and
the 100 images with I.F step. The TPMs are tested against the original model already
trained with 3000 filtered and unfiltered samples. The accuracy in detecting these anti-
forensically forged images as manipulated, is given in Table VII as the percentage of
images classified as manipulated, out of 1000 images in the without I.F case and out
of 100 in with I.F case. It can be seen that the percentage of accuracy is as high as 99%
and above for images of size 256×256. As the anti-forensic algorithm tries to remove the
noise, it still implants subtle artifacts. Further, it may not eliminate compression noise
completely and the spatial correlation of the left over noise would not be preserved.
This proves the efficacy of the proposed algorithm against intelligent enhancement
techniques.

Also, we perform the same detection experiment with low resolution anti-
forensically forged images (128 × 128 and 64 × 64) similar to the experiments given
in section 6.4. The ROC curves of these experiments are given in Fig 12. It can clearly
be seen that for an FPR of 0.05, TPR as high as 0.85 is achieved even for 64 × 64
patches. Next, we implement some of the features that were used in section 6.2 on
this anti-forensically modified images and try to detect filtering. The results of this
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Fig. 12. Left: ROC curves for detection of anti-forensically forged images of sizes 256 × 256, 128 × 128
and 64 × 64, Right: ROC curves for detection of JPEG anti-forensically forged images of sizes 256 × 256 by
features such as Chen [Chen and Shi 2008], CC-PEV [Pevny and Fridrich 2007], CF [Kodovsky et al. 2012]
and SPAM [Kirchner and Fridrich 2010] for quality factor 90.

experiment is provided as the ROC curve of detection using features [Kirchner and
Fridrich 2010], [Chen and Shi 2008], [Pevny and Fridrich 2007] and [Kodovsky et al.
2012]. It is evident from the ROC curve shown in Fig 12 for quality factor qf2 = 90 that
all these methods fail to detect filtering in the presence of compression anti-forensics.
Their TPR drops to less than 0.6 for an FPR of 0.05 while the proposed method from
Fig 12 for 256× 256 size still gives a TPR above 0.9. Even though the steganalytic fea-
tures did not give very low performance in general filtering detection, it can be seen
from this experiment that they are all vulnerable to jpeg anti-forensic attack.

7.2. Median filtering antiforensics
It has been shown in the literature [Kirchner and Bohme 2008], [Kirchner and Fridrich
2010] and [Wu et al. 2013] that median filtering is by itself an effective anti-forensic
operation. It degrades the performance of many forensic algorithms and thus a lot of
median filtering detection techniques were introduced. The non linearity of the median
filter makes it difficult for forensic algorithms that utilize linearity assumptions to
detect forgery. We implemented a median filtering anti-forensic algorithm [Fan et al.
2015] by Wei Fan et al. that has been able to degrade the performance of most of the
median filtering detection algorithms. We considered 2000 images from the ’original’

Fig. 13. ROC curve for detection of anti-forensically forged median filtered images of quality factor 90 using
proposed method and by features such as Chen [Chen and Shi 2008], CC-PEV [Pevny and Fridrich 2007],
CF [Kodovsky et al. 2012] and SPAM [Kirchner and Fridrich 2010].

dataset and median filtered 1000 of those images with 3 × 3 kernel filter. We then
implemented the anti-forensic algorithm described in [Fan et al. 2015] over the median
filtered images. We then tried classifying the 2000 images as unfiltered or median
filtered using our original trained general filtering detection SVM model from section
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5.1. The accuracy of classification for quality factor qf2 90 is 86.5% whereas that of
quality factor 30 is 72%. The ROC curve of detection for quality factor 90 is given in
Fig 13. This proves the efficacy of the proposed technique against median filtering
anti-forensics. However, when we use the model trained for ‘median filtering detection’
from section 6.1.2, the anti-forensic algorithm succeeds in bringing down the accuracy
in detection to less than 60%.

We also compare the results for this detection with some of the features from section
6.2 for detecting median filtering under median filtering antiforensics using ‘general
filtering detection’ model as explained in the same section. The results are given as
ROC curve for quality factor 90 in Fig 13. It can be noted that the proposed technique
performs better than any of the popular features. For lower quality factors, the per-
formance of these features reduced drastically whereas that of the proposed method
remained at above 70%.

8. DISCUSSION
In the proposed technique two natural image models are used owing to their good per-
formance in image restoration ([Fan et al. 2013], [Li and Singh 2009]). However, we
imply that any other image prior model can be used and better models may yield bet-
ter results. In order to give a comparison as to which of the two image priors used in
the paper is better, factors such as speed, efficiency and flexibility are to be taken into
account. In the HMRF image prior based method, the amount of noise extracted can
be controlled by parameters such as weight, learning rate, smoothing parameter etc.
thereby providing scalability. However, the time taken by HMRF prior based denois-
ing followed by TPM extraction is approximately 120 seconds per image on a computer
with Intel i3 processor and 4GB RAM. This is six times that of what GMM prior based
denoising followed by TPM extraction takes. This is because GMM based denoising
involves a one step MAP approximation rather than an extensive gradient descent.
Also the dimensionality of the TPM features is reduced in the GMM prior based exper-
iments because of lower variance in the compression noise extracted. Still, GMM prior
based denoising does not provide scalability to modify the denoising parameters since
it is learning based. We believe either of the priors must mostly give similar results
even though GMM based is faster.

9. CONCLUSION
This paper presents a novel quantization noise based method to detect and classify
filtering operations applied on an image as part of forgery. Towards this, we derive a
modification of the HMRF image model which can take blocking artifacts into account.
We then investigated transition probability features of quantization noise for detect-
ing and classifying the filters. Further, we also study the effectiveness of GMM prior
model and compare the results for both the prior distributions. The robustness of the
proposed scheme is demonstrated through analytical and empirical measures.

The following inferences are made from the results obtained using the proposed
method. First, the detection and classification accuracies are above 80% and around
88% respectively. This shows that the transition probabilities of the compression noise
of the image or its modified version are robust measure of classifying image manipula-
tions. Second, the method gives high accuracies for detection and classification under
a wide range of Quality Factors and filters. Also, the proposed technique is effective in
detecting filtering enhancement in low resolution images and images that are filtered
more than once. In addition, the algorithm can potentially be used for localizing the
enhanced regions. Third, this technique is effective against anti-forensically manipu-
lated images giving a very high accuracy against both compression based anti-forensics
and median filter anti-forensics. Finally, to the best of our knowledge, we believe that,
this is the first approach which targets filtering detection in both JPEG and TIFF im-

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 H. Ravi et al.

ages under various real world experimental settings and is effective against popular
anti-forensic techniques.

Future work will be to analyze the effect of contrast enhancement along with filter-
ing enhancement on compression noise. Also, how effectively can quantization noise be
used for localization of forgery will be investigated.
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