TUTORIAL 6

Q1) Consider a single turn rectangle loop placed in a uniform magnetic field as shown in figure. The plane of the loop is perpendicular \& the resistance of loop is 0.4 ohm. Magnetic field $=1 / 4 \sin \omega t, \omega=100 \pi \mathrm{rad} / \mathrm{sec}$. then power output of loop is?

\times

\times

Sol.
$V_{e m f}=\frac{-d \emptyset}{d t}$
$\varnothing=\iint \vec{B} \cdot \vec{d} s$
$\emptyset=B A \cos \theta$
$\theta=0$
$\emptyset=B A \cos \theta=\frac{1}{4} \sin \omega t\left(50 \times 10^{-4}\right)$
$V_{e m f}=\frac{-d \emptyset}{d t}=\frac{-100 \pi}{4} \times 50 \times 10^{-4} \cos \omega t$
$V_{e m f}=-0.39 \cos \omega t$
$P=\frac{V_{r m s}{ }^{2}}{R}=\frac{1}{2} \frac{V_{m}{ }^{2}}{R}=\frac{1}{2} \frac{(0.39)^{2}}{0.4}$
$P=0.1925 W$

Q2) A Circular turn of 1 m revolves at 60 rpm about its diameter as shown in fig.
Then the peak value of induced emf is? $\left(H=10^{7} \hat{a}_{z}\right)$

Sol.
$60 \mathrm{rpm}=60 \times \frac{2 \pi}{60} \mathrm{r} / \mathrm{sec}$

$$
V_{e m f}=\frac{-d(B A \cos \theta)}{d t}=\omega B A \sin \theta
$$

\Rightarrow Peak value $=B A \omega=\frac{4 \pi \times 10^{-7} \times 10^{7} \times \pi \times 60 \times 2 \pi}{60}=248.05$

Q3) A uniform magnetic field $B(t)$, pointing straight up, fills the shaded circular region of Fig. if B is changing with time, what is the induced electric field?

Sol.
$\oint E . d l=E(2 \pi s)=\frac{-d \varphi}{d t}=\frac{-d}{d t}\left(\pi s^{2} B(t)\right)=-\pi s^{2} \frac{d B}{d t}$
Therefore,
$E=\frac{-s}{2} \frac{d B}{d t} \widehat{\varnothing}$
If B is increasing, E runs clockwise, as viewed from above.

Q4) A metal disk of radius a rotates with angular velocity ω about a vertical axis, through a uniform field B, pointing up. A circuit is made by connecting one end of a resistor to the axle and the other end to a sliding contact, which touches the outer edge of the disk. Find the current in the resistor?

Sol. The speed of a pointer on the disk at a distance sfrom the axis is $v=\omega s$, so the force per unit charge is $f_{\text {mag }}=v \times B=\omega s B \hat{s}$. The emf is therefore
$\varepsilon=\int_{0}^{a} f_{\text {mag }} d s=\omega B \int_{0}^{a} s d s=\frac{\omega B a^{2}}{2}$ and the current is $I=\frac{\varepsilon}{R}=\frac{\omega B a^{2}}{2 R}$

Q5) An all-metal aeroplane drives down vertically at $300 \mathrm{~km} / \mathrm{s}$ at a place where the horizontal component of the earth's field is 0.4 oersted. If the wing span is 30 m , what will be the resulting potential difference between the tips?

Sol. Vertical distance $=300 \mathrm{~km} / \mathrm{s}=3 \times 10^{5} \mathrm{~m} / \mathrm{s}$
Distance between wing tips $=30 \mathrm{~m}$
Area swept by the wing span in one sec. $\frac{d A}{d t}=3 \times 10^{5} \times \frac{30 m^{2}}{s}=9 \times \frac{10^{6} \mathrm{~m}^{2}}{\mathrm{~s}}$
Now using Faraday's law of induction the potential difference between the wing tips is given by-

$$
\xi=\frac{-d \varphi_{B}}{d t}=\frac{-d(\vec{B} \cdot \vec{A})}{d t}=\frac{-d(H A)}{d t}=-H \frac{d A}{d t}
$$

Where - ve sign shows the direction of the induced emf.
Now oersted (Gauss) $=10^{-4}$ weber $/ \mathrm{m}^{2}$

$$
\xi=3.6 \times 10^{2}=360 \mathrm{Volts}
$$

Q6) A vertical disc of diameter 20 cm makes 100 revolutions per second about a horizontal axis passing through its centre. A uniform magnetic field of 100 gauss acts perpendicular to the plane of the disc. Calculate the potential difference between its centre and rim in volts?

Sol.
$B=100$ gauss $=10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$
$r=10 \mathrm{~cm}=0.1 \mathrm{~m}$
Area swept out by disc in one sec

$$
\begin{aligned}
\frac{d A}{d t}= & \pi r^{2} \times n o \text { of revolution per second } \\
& =\pi \times(0.1)^{2} \times 10 \\
& =3.14 \times 0.1 \times 0.1 \times 100=3.14
\end{aligned}
$$

The magnetic flux linked with the disc is given by $\varphi=B A$
By Faraday's law, the induced emf is given by
$\xi=-\frac{d \varphi_{B}}{d t}=-\frac{d(B A)}{d t}=-B \frac{d A}{d t}=10^{-2} \times 3.14=0.0314$ Volt

