TUTORIAL 5

Q1) A current I flow down a wire of radius a
a) If it is uniformly distributed over the surface, what is the surface current density K ?
b) If it is distributed in such a way that the volume current density is inversely proportional to the distance from the axis, what is J ?

Sol. a) $\vec{K}=\frac{d \vec{l}}{d l} \quad l$ is parallel to current flow

$$
\left.K=\frac{I}{2 \pi a} \quad \text { (direction is same as of current } \mathrm{I}\right)
$$

b) $\mathrm{J}=\frac{k}{x}$

$$
\begin{aligned}
& I=\int J d a=\int \frac{k}{x} \mathrm{da} \\
& a=\pi x^{2} \\
& \mathrm{da}=2 \pi x d x \\
& I=\int_{0}^{a} \frac{k}{x} 2 \pi x d x=2 \pi k a \\
& \mathrm{k}=\frac{I}{2 \pi a} \Rightarrow \mathrm{~J}=\frac{I}{2 \pi a x}
\end{aligned}
$$

(direction is same as current)

Q2) A metallic rod of linear density $0.25 \mathrm{~kg}-\mathrm{m}^{-1}$ is lying horizontally on smooth inclined plane which makes an angle of 45° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of strength 0.25T is acting on it in the vertical direction. Calculate the electric current flowing in the rod to keep it stationary.

B IL $\cos \theta=m g \sin \theta$
BI $\cot \theta=\frac{m g}{L}$
$\mathrm{I}=\frac{m g}{B L} \tan \theta=9.8 \mathrm{~A}$

Q3) A thin soap bubble of radius $R=1 \mathrm{~cm}$, and thickness $\mathrm{a}=3.3 \mathrm{um}(a \ll R)$, is at a potential of 1 V with respective to a reference point at infinity. The bubble bursts and becomes a single spherical drop of soap (assuming all the soap is contained in the drop) of radius r. The volume of the soap in the thin bubble is $4 \pi R^{2} a$ and that of the drop is $\frac{4}{3} \pi r^{3}$. The potential in volts, of the resulting single spherical drop with respect to the same reference point at infinity is \qquad . (Give the answer up to two decimal places).

Sol. $\left(4 \pi R^{2} a\right) \rho=\left(\frac{4}{3} \pi r^{3}\right) \rho$
$\rho \rightarrow$ charge density $\left(c / m^{3}\right)$
$Y=\left(3 R^{2} a\right)^{1 / 3}$
The potential of the bubble
$\mathrm{V}=\frac{1}{4 \pi \varepsilon} \frac{Q}{R}$
$\mathrm{Q}=(4 \pi \varepsilon R) V$
$\mathrm{Q}=4 \pi \varepsilon_{o} 1 \times 10^{-2}$
Potential of the soap drop

$$
V^{\prime}=\frac{1}{4 \pi \varepsilon} \frac{Q}{R}
$$

$$
V^{\prime}=\frac{1}{4 \pi \varepsilon_{o}} \frac{4 \pi \varepsilon_{o} 1 \times 10^{-2}}{\left(3 \times 1 \times 10^{-4} \times 3.3 \times 10^{-6}\right)^{1 / 3}}=10.03
$$

Q4) Two semi-infinite conducting sheets are placed at right angles to each other as shown in figure. A point charge of $+Q$ is placed at a distance of d from both sheets. The net force on the charge is $\frac{Q^{2}}{4 \pi \varepsilon_{o}} \frac{\vec{k}}{d^{2}}$ where \vec{k} is given by

Sol.

The net force due to remaining charges is given by:

$$
\begin{aligned}
& \vec{F}=\overrightarrow{F_{1}}+\overrightarrow{F_{2}}+\overrightarrow{F_{3}} \\
& \vec{F}=\frac{-Q^{2}}{4 \pi \varepsilon_{o}(2 d)^{2}}\left(\frac{2 d \widehat{a_{x}}}{2 d}\right)-\frac{Q^{2}}{4 \pi \varepsilon_{o}(2 d)^{2}}\left(\frac{2 d \widehat{a_{y}}}{2 d}\right)+\frac{Q^{2}}{4 \pi \varepsilon_{o}(\sqrt{8 d})^{2}}\left(\frac{2 d \widehat{a_{x}}+2 d \widehat{a_{y}}}{2 \sqrt{2 d}}\right) \\
& \vec{F}=\frac{Q^{2}}{4 \pi \varepsilon_{o}(d)^{2}}\left[-\frac{1}{4} \widehat{a_{x}}-\frac{1}{4} \widehat{a_{y}}+\frac{1}{8 \sqrt{2}} \widehat{a_{x}}+\frac{1}{8 \sqrt{2}} \widehat{a_{y}}\right] \\
& \vec{F}=\frac{Q^{2}}{4 \pi \varepsilon_{o}(d)^{2}}\left[\frac{(1-2 \sqrt{2})}{8 \sqrt{2}} \widehat{a_{x}}+\frac{(1-2 \sqrt{ } 2)}{8 \sqrt{2}} \widehat{a_{y}}\right]
\end{aligned}
$$

The given net force on ' Q '

$$
\begin{aligned}
& \vec{F}=\frac{Q^{2}}{4 \pi \varepsilon_{o}(d)^{2}} \vec{K}=\frac{Q^{2}}{4 \pi \varepsilon_{o}(d)^{2}}\left[\left(\frac{(1-2 \sqrt{2})}{8 \sqrt{2}}\right) \hat{\imath}+\left(\frac{(1-2 \sqrt{2})}{8 \sqrt{2}}\right) \hat{\jmath}\right] \\
& \vec{K}=\frac{(1-2 \sqrt{2})}{8 \sqrt{2}} \hat{\imath}+\left(\frac{(1-2 \sqrt{2})}{8 \sqrt{2}}\right) \hat{\jmath}
\end{aligned}
$$

Q5) Derive an expression for electric field due to a short dipole at a far away point P in cartesian coordinate.

Sol. We know the potential at P due to its dipole at a far away point is given as-
$\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\frac{1}{4 \pi \varepsilon_{o}} \frac{p \cos \theta}{r^{2}}$
Where $\mathrm{r}=\sqrt{ }\left(x^{2}+y^{2}+z^{2}\right)$ is the distance of point p

$$
\cos \theta=\frac{x}{r}
$$

Also, $\vec{E}=-\nabla V$

$$
E_{x} \hat{\imath}+E_{y} \widehat{\jmath}+E_{z} \widehat{k}=-\left(\frac{\partial V}{\partial x} \hat{\imath}+\frac{\partial V}{\partial y} \widehat{\jmath}+\frac{\partial V}{\partial z} \widehat{k}\right)
$$

Now,

$$
\begin{aligned}
& E_{x}=-\frac{\partial V}{\partial x}=-\frac{\partial}{\partial x}\left(\frac{p \cos \theta}{4 \pi \varepsilon_{o} r^{2}}\right)=-\frac{p}{4 \pi \varepsilon_{o}} \frac{\partial}{\partial x}\left(\frac{x}{r^{3}}\right) \quad \text { as } \cos \theta=\frac{x}{r} \\
& E_{x}=-\frac{p}{4 \pi \varepsilon_{o}}\left[\frac{1}{r^{3}}+x \frac{\partial}{\partial x}\left(\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right)\right] \\
& E_{x}=-\frac{p}{4 \pi \varepsilon_{o}}\left[\frac{1}{r^{3}}-x \frac{3}{2}\left(\frac{2 x}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}\right)\right] \\
& E_{x}=-\frac{p}{4 \pi \varepsilon_{o}}\left[\frac{1}{r^{3}}-\frac{3 x^{2}}{r^{5}}\right] \\
& E_{x}=-\frac{p}{4 \pi \varepsilon_{o}}\left[\frac{1}{r^{3}}-\frac{3 \cos ^{2} \theta}{r^{5}}\right]
\end{aligned}
$$

$$
E_{x}=-\frac{p}{4 \pi \varepsilon_{0}}\left[\frac{3 \cos ^{2} \theta-1}{r^{3}}\right]
$$

Similarly,

$$
\begin{aligned}
& E_{y}=-\frac{\partial V}{\partial y}=-\frac{p}{4 \pi \varepsilon_{o}} \frac{3 y x}{r^{5}} \\
& E_{z}=-\frac{\partial V}{\partial z}=-\frac{p}{4 \pi \varepsilon_{o}} \frac{3 z x}{r^{5}}
\end{aligned}
$$

The resultant of y and z component of field gives the component of field in $y-z$ plane which is directed perpendicular to the x-axis i.e, the axis of the dipole.

Then, the transverse component of field is -

$$
E_{T}=\sqrt{ }\left(E_{y}{ }^{2}+E_{z}{ }^{2}\right)
$$

On substitution

$$
\begin{aligned}
& E_{T}=\frac{3 p x}{4 \pi \varepsilon_{o} r^{5}} \sqrt{ }\left(y^{2}+z^{2}\right)=\frac{3 p x}{4 \pi \varepsilon_{o} r^{5}} \sqrt{ }\left(r^{2}-x^{2}\right)=\frac{3 p x}{4 \pi \varepsilon_{o} r^{5}} \sqrt{ }\left(r^{2}-r^{2} \cos ^{2} \theta\right) \\
& E_{T}=\frac{3 p x \sin \theta}{4 \pi \varepsilon_{o} r^{5}} \\
& E_{T}=\frac{p}{4 \pi \varepsilon_{o}} \frac{3 \cos \theta \sin \theta}{r^{3}} \quad(\mathrm{x}=\mathrm{r} \cos \theta)
\end{aligned}
$$

Total Field $E=\sqrt{ }\left(E_{x}{ }^{2}+E_{y}{ }^{2}+E_{z}{ }^{2}\right)=\sqrt{ }\left(E_{r}{ }^{2}+E_{y}{ }^{2}\right)$
Substituting (E_{r} and E_{x})

$$
\begin{aligned}
& \vec{E}=\frac{\vec{p}}{4 \pi \varepsilon_{o} r^{3}}\left[\left(3 \cos ^{2} \theta-1\right)^{2}+(3 \cos \theta \sin \theta)^{2}\right]^{1 / 2} \\
& \vec{E}=\frac{\vec{p}}{4 \pi \varepsilon_{o} r^{3}}\left[9 \cos ^{4} \theta-6 \cos ^{2} \theta+1+9 \cos ^{2} \theta \sin ^{2} \theta\right]^{1 / 2} \\
& \vec{E}=\frac{\vec{p}}{4 \pi \varepsilon_{o} r^{3}}\left[9 \cos ^{4} \theta-6 \cos ^{2} \theta+1+9 \cos ^{2} \theta\left(1-\cos ^{2} \theta\right)\right]^{1 / 2} \\
& \vec{E}=\frac{\vec{p}}{4 \pi \varepsilon_{o} r^{3}}\left[\left(3 \cos ^{2} \theta+1\right)\right]^{1 / 2} \\
& \vec{E}=\frac{\vec{p}}{4 \pi \varepsilon_{o} r^{3}}\left[\sqrt{ }\left(3 \cos ^{2} \theta+1\right)\right]
\end{aligned}
$$

