TUTORIAL 4

Q1. Calculate the potential and field due to the dipole of dipole moment $4.5 \times$ $10^{-10} \mathrm{C} / \mathrm{m}$ at a distance of 1 m from it, (i) on its axis (ii) on its perpendicular bisection. Sol.

As we know the potential due to dipole is -

$$
V=\frac{1}{4 \pi \varepsilon_{o}} \frac{p \cos \theta}{r^{2}}
$$

Here $p=4.5 \times 10^{-10} \frac{\mathrm{C}}{\mathrm{m}}$ and $r=1 \mathrm{~m}$
i. On its axis $\theta=0$

$$
\begin{gathered}
V=\frac{1}{4 \pi \varepsilon_{o}} \frac{p}{r^{2}}=\frac{9 \times 10^{9} \times 4.5 \times 10^{-10}}{1^{2}}\left[\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9}\right] \\
=4.05 \mathrm{~V}
\end{gathered}
$$

and field is given by-

$$
\begin{aligned}
E= & \frac{p\left(3(\cos \theta)^{2}+1\right)^{1 / 2}}{4 \pi \varepsilon_{0} r^{3}} \\
& {\left[\partial E=\frac{-\partial V}{\partial r}=>E=\frac{V}{r}\right.}
\end{aligned}
$$

As, $\theta=0$
$=\frac{2 p}{4 \pi \varepsilon_{o} r^{3}}=\frac{2 \times 9 \times 10^{9} \times 4.5 \times 10^{-10}}{1^{3}}=8.1 \frac{\mathrm{~V}}{\mathrm{~m}}$
ii. On its perpendicular bisector, $\theta=90^{\circ}$ then $\cos 90^{\circ}=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{V}=0 \\
& \Rightarrow E=\frac{p}{4 \pi \varepsilon_{0} r^{3}}=\frac{9 \times 10^{9} \times 4.5 \times 10^{-10}}{1^{3}}=\frac{4.05 \mathrm{~V}}{m}
\end{aligned}
$$

Q2. Consider a dipole, as shown in Fig, located at the origin of $x y$ system and dipole pointing along the positive y-axis. Calculate E_{x}, E_{y} component and total electric field \vec{E} at a far away point $\mathrm{P}(\mathrm{x}, \mathrm{y})$.

We know the value of V is-

$$
V(x, y, z)=\frac{1}{4 \pi \varepsilon_{o}} \frac{p \cos \theta}{r^{2}}
$$

Here,

$$
r=\sqrt{x^{2}+y^{2}}, r^{2}=x^{2}+y^{2}
$$

And $\cos \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}, \cos \theta=\frac{y}{r}$

$$
V=\frac{p}{4 \pi \varepsilon_{o}} \frac{y}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

The component of the field along y-axis

$$
\begin{aligned}
E_{y}=\frac{-\partial V}{\partial y}= & \frac{-p}{4 \pi \varepsilon_{o}}\left[\frac{-3}{2} \frac{(2 y) y}{\left(x^{2}+y^{2}\right)^{5 / 2}}+\frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right] \\
& =\frac{p}{4 \pi \varepsilon_{o}}\left[\frac{3 y^{2}}{\left(x^{2}+y^{2}\right)^{5 / 2}}-\frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right] \\
& =\frac{p}{4 \pi \varepsilon_{o}} \frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}}\left[\frac{3 y^{2}}{\left(x^{2}+y^{2}\right)}-1\right]
\end{aligned}
$$

Substituting the value of r^{2} and $\cos \theta$, we get

$$
E_{y}=\frac{p}{4 \pi \varepsilon_{o}} \frac{1}{r^{3}}\left[3(\cos \theta)^{2}-1\right]
$$

Similarly the component of field along x-axis

$$
E_{x}=\frac{3 p}{4 \pi \varepsilon_{o}} \frac{\sin \theta \cos \theta}{r^{3}}
$$

\vec{E} at $P=\frac{\vec{p}}{4 \pi \varepsilon_{o} r^{3}}\left[3 \sin \theta \cos \theta \hat{\imath}+\left(3(\cos \theta)^{2}-1\right) \hat{\jmath}\right]$

Q3. Planes $\mathrm{z}=0, \mathrm{z}=5$ carries a charge of $10 \frac{\mathrm{nC}}{\mathrm{m}^{2}},-10 \frac{\mathrm{nC}}{\mathrm{m}^{2}}$ respectively. Find the electric field
i) Above the two planes.
ii) Below the two planes.
iii) In between the two planes.

Sol. $E_{A}=E_{1}+E_{2}=\frac{10 \times 10^{-9}}{2 \varepsilon} \hat{a}_{z}-\frac{10 \times 10^{-9}}{2 \varepsilon} \hat{a}_{z}=0$

$$
\begin{aligned}
E_{B}=E_{1}+E_{2}= & \frac{10 \times 10^{-9}}{2 \varepsilon}\left(-\hat{a}_{z}\right)-\frac{10 \times 10^{-9}}{2 \varepsilon}\left(-\hat{a}_{z}\right)=0 \\
& E_{C}=\frac{10 \times 10^{-9}}{2 \varepsilon} \hat{a}_{z}-\frac{10 \times 10^{-9}}{2 \varepsilon}\left(-\hat{a}_{z}\right)=1.12 \hat{a}_{z} \frac{n C}{m^{2}}
\end{aligned}
$$

Q4. A sphere of radius 'a' having a charge of $\rho_{V} \frac{C}{m^{3}}$. A spherical cavity of radius 'b' is made inside the sphere. If the center of cavity is at a distance of d from center of the sphere, then electric field at any point inside the cavity is?

$$
\vec{E}=\frac{r . \rho_{V}}{3 \varepsilon} \hat{a}_{r}=\frac{\rho_{V}}{3 \varepsilon}\left(r \hat{a}_{r}\right) \quad \text { as, } \vec{A}=|A| \hat{a}_{n}
$$

$$
\vec{E}=\frac{\rho_{V}}{3 \varepsilon} \vec{r}
$$

$$
\begin{aligned}
E_{1}(\text { due to sphere }) & =\frac{\rho_{V}}{3 \varepsilon} \vec{r}_{1} \\
E_{2}(\text { due to cavity }) & =\frac{-\rho_{V}}{3 \varepsilon} \vec{r}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}_{1}-\vec{r}_{2}-d=0 \\
& \qquad \vec{r}_{1}-\vec{r}_{2}=d \\
& \qquad \vec{E}=\vec{E}_{1}+\vec{E}_{2}=\frac{\rho_{V}}{3 \varepsilon}\left(\vec{r}_{1}-\vec{r}_{2}\right)=\frac{\rho_{V} d}{3 \varepsilon}
\end{aligned}
$$

Q5. Two spheres of radius $a \& b$ having equal amount of charge but with opposite polarity are intersecting as shown in the figure. Then find electric field at any point in common region.

$\vec{r}_{1}-\vec{r}_{2}-d=0$

$$
\Rightarrow \quad \vec{r}_{1}-\vec{r}_{2}=d
$$

$\vec{E}=\vec{E}_{1}+\vec{E}_{2}=\frac{\rho_{V}}{3 \varepsilon} \vec{r}_{1}+\frac{-\rho_{V}}{3 \varepsilon} \vec{r}_{2}=\frac{\rho_{V}}{3 \varepsilon}\left(\vec{r}_{1}-\vec{r}_{2}\right)=\frac{\rho_{V} d}{3 \varepsilon}$

Q6. An infinite conducting slab kept in a horizontal plane carries a uniform charge density σ. Another infinite slab of thickness t, made of a linear dielectric material of k (dielectric constant), is kept along the conducting slab. The boundary charge density on the upper surface of dielectric slab is?

$$
\vec{E}=\frac{\sigma}{\varepsilon} \hat{z}=\frac{\sigma}{k \varepsilon_{o}} \hat{z}
$$

$$
\begin{gathered}
\vec{p}=\varepsilon_{o} X_{e} \vec{E}=\varepsilon_{o} X_{e} \frac{\sigma}{k \varepsilon_{o}} \hat{z}=\frac{\varepsilon_{o}(k-1) \sigma}{k \varepsilon_{o}} \hat{z}=\frac{(k-1) \sigma}{k} \hat{z} \\
\sigma_{1}=\vec{p} . \hat{n}=\vec{p} . \hat{z}=\frac{(k-1) \sigma}{k}
\end{gathered}
$$

Q7. Suppose the entire region below the plane $z=0$ is filled with uniform linear dielectric material of susceptibility Xe_{e}. Calculate the force on a point charge q situated a distance d above the origin.

$\sigma_{b}=\vec{p} . \hat{n}=p_{z}=\varepsilon_{o} X_{e} E_{z}$
$E_{Z}=\frac{-q \cos \theta}{4 \pi \varepsilon_{o}\left(r^{2}+d^{2}\right)}=\frac{-q d}{4 \pi \varepsilon_{o}\left(r^{2}+d^{2}\right)^{3 / 2}}$

$$
\begin{gathered}
\sigma_{b}=\varepsilon_{o} X_{e}\left[\frac{-q d}{4 \pi \varepsilon_{o}\left(r^{2}+d^{2}\right)^{\frac{3}{2}}}-\frac{\sigma_{b}}{2 \varepsilon_{o}}\right] \\
\sigma_{b}=\frac{-1}{2 \pi}\left(\frac{X_{e}}{X_{e}+2}\right) \frac{q d}{\left(r^{2}+d^{2}\right)^{\frac{3}{2}}} \\
q_{b}=-\left(\frac{X_{e}}{X_{e}+2}\right) q \\
\vec{E}=\frac{1}{4 \pi \varepsilon_{o}} \int \frac{\hat{r}}{r^{2}} \sigma_{b} d a \\
\vec{F}=\frac{q q_{b} \hat{z}}{4 \pi \varepsilon_{o}(2 d)^{2}}=\frac{-1}{4 \pi \varepsilon_{o}}\left(\frac{X_{e}}{X_{e}+2}\right) \frac{q^{2}}{4 d^{2}} \hat{z}
\end{gathered}
$$

