ECE230: Fields \& Waves (Lect. 4, Winter 2021)

Instructor: Sayak Bhattacharya

Divergence theorem

- Any arbitrary volume can be chopped up into tiny boxes. Two such sie-by-side boxes have been shown above.
- What happens to the outward flux at the surface shared by the boxes?
- Add up the outward fluxes from all the tiny boxes spanning the macroscopic volume: $\oint_{S_{\text {big }}} \vec{V} \cdot \overrightarrow{d s}=\int_{V_{\text {big }}}(\vec{\nabla} \cdot \vec{V}) d v$

Combining divergence and gradient:Laplacian

- $\vec{\nabla} \cdot(\vec{\nabla} U)=\left(\hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}\right) \cdot\left(\hat{x} \frac{\partial U}{\partial x}+\hat{y} \frac{\partial U}{\partial y}+\hat{z} \frac{\partial U}{\partial z}\right)=$ $\left(\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}}\right)$
- Shorthand: $\vec{\nabla} \cdot(\vec{\nabla} U)=\nabla^{2} U$
- $\nabla^{2} \equiv\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)$, known as Laplacian operator

Earnshaw's theorem

- A scalar field $\phi(x, y, z)$ that has $\nabla^{2} \phi=0$ over a region in space, cannot have a local maxima or minima in that region.
- Proof: assume that the field ϕ has a local minima. So, each of $\frac{\partial^{2} \phi}{\partial x^{2}}$, $\frac{\partial^{2} \phi}{\partial y^{2}}$ and $\frac{\partial^{2} \phi}{\partial z^{2}}$ must be positive and would add up to a positive number.
- At best, we can have a saddle point (say, $\frac{\partial^{2} \phi}{\partial x^{2}}$ and $\frac{\partial^{2} \phi}{\partial y^{2}}>0$ and $\frac{\partial^{2} \phi}{\partial z^{2}}<0$ yielding $\nabla^{2} \phi=0$)

You eat it often!

Hyperbolic paraboloid and Paul trap

- $z-\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=0$
- Assume there's a roof of this shape and you need to stabilize a football at the saddle point. Can you do that?
- Wolfgang Paul: Nobel prize 1989 for Paul trap (Demo, Demo)

Curl operator

$$
\begin{aligned}
& \vec{\nabla} \times \vec{A}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right|= \\
& \hat{x}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\hat{y}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\hat{z}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)
\end{aligned}
$$

Definition of curl: line integral along an infinitesimal loop

- $\oint \vec{A} \cdot \vec{d} l=\left\{A_{y}\left(x_{0}, y_{0}, z_{0}\right)-\frac{d z}{2} \frac{\partial A_{y}}{\partial Z}\right\} d y-\left\{A_{y}\left(x_{0}, y_{0}, z_{0}\right)+\frac{d z}{2} \frac{\partial A_{y}}{\partial z}\right\} d y+$ $\left\{A_{z}\left(x_{0}, y_{0}, z_{0}\right)+\frac{d y}{2} \frac{\partial A_{z}}{\partial y}\right\} d z-\left\{A_{z}\left(x_{0}, y_{0}, z_{0}\right)-\frac{d y}{2} \frac{\partial A_{z}}{\partial y}\right\} d z$
- $\oint \vec{A} \cdot \vec{d} l=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) d y d z$
- $\oint \vec{A} \cdot \overrightarrow{d l}=\underset{d S \rightarrow 0}{\operatorname{Lt}}\{(\vec{\nabla} \times \vec{A}) \cdot \hat{x}\} d S=\operatorname{Lt}_{d S \rightarrow 0}^{\operatorname{Lt}}(\vec{\nabla} \times \vec{A}) \cdot \overrightarrow{d S}$

Finite loop: Stoke's theorem

- Divide the finite blue loop into infinitesimal small
- $\int_{\text {Blue }}(\vec{\nabla} \times \vec{A}) \cdot \overrightarrow{d S}=\sum_{\text {Reds }}(\vec{\nabla} \times \vec{A}) \cdot \overrightarrow{d S}=\sum_{\text {Reds }} \oint_{\vec{A}} \cdot \overrightarrow{d l} \Rightarrow$
$\int_{\text {Blue }}(\vec{\nabla} \times \vec{A}) \cdot \overrightarrow{d S}=\oint_{\text {Blue }} \vec{A} \cdot \overrightarrow{d l}$
- When is Stoke's theorem not applicable?

Mobius Strip: the one-sided surface

- Which way does the area vector point?

Questions so far?

