ECE230: Fields \& Waves (Lect. 2, Winter 2021)

Instructor: Sayak Bhattacharya

Gravitation vs. EM

- Case 1: Two point-masses (1 kg . each), separated by 1 m $\left(F_{\text {grav }}=G \frac{m_{1} m_{2}}{r^{2}} \sim 10^{-11}\right)\left[G=6.67408 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right]$
- Case 2: Let's replace the two point masses with point charges, 1 Coulomb each $\left(F_{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \sim 10^{12}\right)\left[\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right]$

Gravitation vs. EM

$$
\text { - } \frac{F_{E}}{F_{\text {grav }}}=\frac{1}{4 \pi \varepsilon_{0} G} \sim \frac{10^{12}}{10^{-11}}=10^{23!!!}
$$

How fast does an electron move?

"Around the world in 80 days 7 mins"?!

- What length-scale are you interested in?
- $\sim 10^{5} \mathrm{~m} / \mathrm{s}$
- Circumference of earth $40,000 \mathrm{~km}=40 \times 10^{6} \mathrm{~m}$
- The electron could circle the earth in less than 7 min .

How fast does an electron (really) move?

- In a conductor: about few $m m$ in 1 s .
- So, just few meter in about 15 mins.

Making waves: accelerated charge

An electromagnetics lecture where we feel sad for KCL, KVL

- Let's consider a resistance connected to a AC source through a small piece of wire (assume that the distance between the resistor and the source is 30 cm)
- How does the circuit behave at 50 Hz ?
- How does the circuit behave at 10 GHz ?
- Open circuit?

Fields

Figure 1: Scalar field

Fields

Figure 2: Vector field

Unified theory of electricity and magnetism: bit of a history

- 1785 : Charles-Augustin de Coulomb reports inverse square law for charges
- 1800 : Alessandro Volta invents battery
- 1820 : Hans Christian Ørsted shows deflection of compass needle brought in the proximity of a current carrying wire
- 1820 : Ampere shows two parallel current-carrying wire attracts/repel depending on the direction of the current
- 1831 : Michael Faraday discovers electromagnetic induction

Unified theory of electricity and magnetism: Maxwell's equations

Figure 3: James Clerk Maxwell (1831-1879)

Unified theory of electricity and magnetism: Maxwell's equations

$$
\left.\begin{array}{l}
\mathbf{P X} \quad+(p+h) x+(k+l) y=\int \mathrm{A} d t-\int \mathrm{D} d t, \\
\mathbf{Q}(\mathbf{X}-\mathrm{Z})+(h+q) x+(m+n) y=\int \mathrm{D} d t-\int \mathrm{C} d t \\
\mathrm{RY} \quad+(k+m) x+(r+o) y=\int \mathrm{A} d t-\int \mathrm{E} d t, \tag{24}\\
\mathrm{~S}(\mathbf{Y}+\mathrm{Z})+(l+n) x+(o+s) y=\int \mathrm{E} d t-\int \mathrm{C} d t \\
\mathbf{G Z}=\int \mathrm{D} t d-\int \mathrm{E} d t .
\end{array}\right\}
$$

Solving these equations for Z , we find

$$
\begin{align*}
\mathrm{Z}\left\{\frac{1}{\mathrm{P}}+\frac{1}{\mathrm{Q}}\right. & \left.+\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{~S}}+\mathrm{B}\left(\frac{1}{\mathrm{P}}+\frac{1}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{Q}}+\frac{1}{\mathrm{~S}}\right)+\mathrm{G}\left(\frac{1}{\mathrm{P}}+\frac{1}{\mathrm{Q}}\right)\left(\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{~S}}\right)+\underset{\mathrm{PQRS}}{\mathrm{BG}}(\mathrm{P}+\mathrm{Q}+\mathrm{R}+\mathrm{S})\right\} \\
& =-\mathrm{F} \frac{1}{\mathrm{PS}}\left\{\frac{p}{\mathrm{P}}-\frac{q}{\mathrm{Q}}-\frac{r}{\mathrm{R}}+\frac{s}{\mathrm{~S}}+h\left(\frac{1}{\mathrm{P}}-\frac{1}{\mathrm{Q}}\right)+k\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{P}}\right)+l\left(\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{Q}}\right)-m\left(\frac{1}{\mathrm{P}}+\frac{1}{\mathrm{~S}}\right)\right. \tag{25}\\
& \left.+n\left(\frac{1}{\mathrm{Q}}-\frac{1}{\mathrm{~S}}\right)+o\left(\frac{1}{\mathrm{~S}}-\frac{1}{\mathrm{R}}\right)\right\} .
\end{align*}
$$

Figure 4: James Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, Royal Society Publishing (1865)

Oliver Heaviside: condensed form of Maxwell's equations (1885)

- $\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}$
- $\vec{\nabla} \cdot \vec{B}=0$
- $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
- $\vec{\nabla} \times \vec{B}=\mu_{0}\left(\vec{J}+\frac{\partial \vec{D}}{\partial t}\right)$

Questions so far?

