
Chapter 2

Introduction to Angular Spectrum

Representation and Tight Binding

Model

In this chapter, we introduce two important concepts which we have used extensively in the rest of

the thesis in order to describe the field profile and dispersion relation of SSP in the high frequency

limit. The first concept is that of angular spectrum representation of spatial electromagnetic field.

This is the 2D Fourier transform of the spatial representation of the field to the spatial frequency

domain [73, 72]. The other concept is the tight binding model which was developed originally to

describe the electronic band structure of solids [50]. Given a 2D slice of field at some reference

plane, angular spectrum representation is a very useful tool to quatify diffracted field at any other

plane which is parallel to the reference plane. This approach will be useful to us when we try

to quantify the SSP near-field in Ch. 3. On the other hand, the remarkable concept of photonic

crystal came into existence from a question which is closely related to Condensed Matter Physics

[?, ?]. More specifically, Anderson [?] had theoretically predicted the localization of electrons

in disordered solids. In analogy, the possibility of localization of photons in disordered dielectric

lattices was investigated by John [?] paving the way to photonic crystal. Since then, analogy with

Solid-state Physics has been proven to be a very important tool in order to understand several

concepts of light propagation and trapping inside photonic crystals. In general, metallic photonic

crystal, used in SSP, lacks the important property of being able to be formulated as a Hermitian

13



eigenvalue problem [?]. Nevertheless, it shares great deals of similarities in band-structure and

associated phenomena (such as, self-collimation). From this view-point, it seems quite possible

to gain deeper insight into the dispersion relation of SSP (and photonic crystals, in general) using

tight binding model (this problem will be addressed in Ch. 4). To this end, starting with Rayleigh-

Sommerfeld formulation for diffraction [?] we discuss the angular spectrum representation of a

2D field distribution and its relation with propagating and evanescent field components. Next, we

review the basics of tight binding model for a solid state crystal.

2.1 Rayleigh-Sommerfeld formulation for diffraction

Let us consider the following problem of diffraction of electromagnetic field from an aperture:

At z = 0, there is an aperture S of arbitrary shape on an infinite screen oriented along xy�plane

(shown in Fig. ). Given the field distribution u(x0,y0,0) over the aperture, where, (x0,y0,0) denotes

the coordinate of a point on the aperture, we are interested in finding out the diffracted field

u(x,y,z) for z > 0 under the assumption that u(x0,y0,0) vanishes everywhere on the screen except

the aperture.

To solve this problem, we start with the scalar wave equation:

—2u+ k2u = 0 (2.1)

If G is the Green’s function corresponding to Eq. 2.1, we can write the following:

—2G+ k2G =�4pd 3(r� r0) (2.2)

In order to get an integral representation for the field, we consider the following vector identi-

ties:

~—.(u~—G) = (~—u.~—G)+u—2G (2.3)

and

~—.(G~—u) = (~—u.~—G)+G—2u (2.4)
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Subtracting Eq. 2.4 from Eq. 2.3:

�
u—2G�G—2u

�
= ~—.

⇣
u~—G�G~—u

⌘
(2.5)

Taking volume integral of both sides of Eq. 2.5 and applying divergence theorem, we get:

˚
V

�
u—2G�G—2u

�
=

‹
S

⇣
u~—G�G~—u

⌘
.
�!
dS (2.6)

Multiplying Eq. 2.1 by G and multiplying Eq. 2.2 by u and subtracting we find that the surface

integral on the right hand side of Eq. 2.6 vanishes when the closed surface over which the integral

is carried out does not contain r0:

‹
S

⇣
u~—G�G~—u

⌘
.
�!
dS = 0 (2.7)

However, when the surface S encloses the point r0 this surface integral term does not vanish

due to the singularity of the Dirac delta function at r = r0. In this case the surface integral can be

calculated by considering an infinitesimal ball of radius e around r = r0 (shown in Fig. ), where

e ! 0. Also, we assume that the surface of the ball is denoted by S0. As the volume bounded by

surface S and S0 does not contain r = r0, from Eq. 2.7 we can write the following:

‹
(S+S0)

⇣
u~—G�G~—u

⌘
.
�!
dS = 0

)
‹

S

⇣
u~—G�G~—u

⌘
.n̂dS =�

‹
S0

⇣
u~—G�G~—u

⌘
.n̂dS

)
‹

S

⇣
u~—G�G~—u

⌘
.n̂dS =�

‹
S0

✓
u

∂G
∂n

�G
∂u
∂n

◆
dS (2.8)

On S0, the outward normal n̂ points along the direction opposite to the radial vector �!e . Also,

we choose the G(e) to be the free-space Green’s function, i.e., G(e) = eike

e . Thus, on S0, ∂G
∂n =

� ∂G
∂e =� ∂

∂e

⇣
eike

e

⌘
.

Thus, we can rewrite Eq. 2.8 as:

‹
S

⇣
u~—G�G~—u

⌘
.n̂dS =� Lt

e!0
4p


u(r0)eike (1� ike)+ eeike ∂u
∂ r

|r=e

�
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) u(r0) =� 1
4p

‹
S

✓
u

∂G
∂n

�G
∂u
∂n

◆
dS (2.9)

We assume the surface S, over which the integral is carried out, to be composed of the infinite

screen S1 at z = 0 and a hemisphere S2 of radius R2 (R2 ! •) Also, we assume that its center is

situated on the screen. Since the diffracted field must satisfy Sommerfeld’s radiation condition,

the integral of Eq. 2.9 vanishes over S2 [73, ?]. So, u(r0) reduces to:

u(r0) =� 1
4p

¨
S1

✓
u

∂G
∂n

�G
∂u
∂n

◆
dS (2.10)

At this point, we consider the choice of the Green’s function by Sommerfeld. According to

Sommerfeld’s formulation, the Green’s function (G�) is represented as:

G� =
eikr

r
� eikr0

r0
(2.11)

Physically, this form of G� at any point can be interpreted as being originated from two point

sources, which are mirror images of each other with respect to the screen at z = 0 and having 180�

phase-shift between themselves (shown in Fig. ). For this choice of Green’s function the solution

of the diffracted field u(r0) is denoted as uI(r0). Clearly, G� vanishes at all points on S1 and Eq.

2.10 reduces to:

uI(r0) =� 1
4p

¨
S1

u
∂G�
∂n

dS (2.12)

Now, we make use of the assumption made in the problem statement to simplify Eq. 2.12

further. Since, u(x0,y0,0) vanishes everywhere on the screen S1 except for the points on the aperture

S, the diffracted field at an arbitrary point r = r0 can be written as:

uI(r0) =� 1
4p

¨
S

u
∂G�
∂n

dS (2.13)

Now, on the aperture the surface normal n̂ is directed along �ẑ. As a result we can evaluate
∂G�
∂n as:

∂G�
∂n

=�∂G�
∂ z

=� ∂
∂ z

 
eikr

r
� eikr0

r0

!
=

∂
∂ z0

 
eikr

r
� eikr0

r0

!
(2.14)
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To simplify the above expression further, we can rewrite the above equation using Kirchoff’s

choice of Green’s function G (which is just the free-space Green’s function) as:

∂G�
∂n

=� ∂
∂ z

 
eikr

r
� eikr0

r0

!
=�∂G

∂ r
∂ r
∂ z

+
∂

∂ r0
(
eikr0

r0
)
∂ r0

∂ z
=�∂G

∂ r
∂ r
∂ z

+
∂G
∂ r

∂ r0

∂ z

) ∂G�
∂n

=�2
∂G
∂ r

∂ r
∂ z

=�2
∂G
∂ z

(2.15)

Thus, we can write the solution of the diffracted field at r = r0 as:

uI(r0) =� 1
2p

¨
S

u
∂G
∂n

dS (2.16)

Within this theoretical framework, we now try to find out the diffracted field at a point P at

distance r = R, where R =
q

(x� x0)2 +(y� y0)2 + z2 andthe Green’s function G(R) = eikR

R . From

Eq. 2.16, we can evaluate u(x,y,z) as:

u(R) =
1

2p

¨
S

dx0dy0u(x0,y0,0)
∂G
∂ z

) u(R) =
1

2p

¨
S

dx0dy0u(x0,y0,0)
∂

∂R

✓
eikR

R

◆
∂R
∂ z

) u(R) =
¨

dx0dy0u(x0,y0,0)
✓

eikR

2pR

◆✓
ik
R
� 1

R2

◆
z
R

(2.17)

Thus, according to Rayleigh-Sommerfeld formulation, the solution for the diffracted field

u(x,y,z) can be written as a convolution of two functions as:

u(x,y,z) = u(x,y,0)⇤h(x,y,z) (2.18)

where, h(x,y,z) = eikr

2pr

�
ik� 1

r

�� z
r

�
. This convolution in the spatial domain is equivalent to a

multiplication in the Fourier domain:

U( fx, fy,z) =U( fx, fy,0)H( fx, fy,z) (2.19)

Here, fx =
kx
2p and fy =

ky
2p represent the spatial frequencies in the transform domain.
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2.2 Angular spectrum representation

According to the Rayleigh-Sommerfeld theory of diffraction, we concluded from Eq. 2.18 that

if the angular spectrum (or spatial frequency domain representation) of the field U( fx, fy,0) is

specified at the aperture plane, we can calculate the angular spectrum of the diffracted field for

any z > 0 just by multiplying a suitable function H( fx, fy,z) with U( fx, fy,0). However, we do not

know yet what H( fx, fy,z) is. To find out H( fx, fy,z) we rewrite the scalar wave equation (i.e. Eq.

2.1) in terms of the angular spectrum U( fx, fy,z) of the spatial field u(x,y,z):

�
—2 + k2�

¨
U( fx, fy,z)ei2p( fxx+ fyy)d fxd fy = 0

)
¨

[�4p2 � f 2
x + f 2

y
�

U( fx, fy,z)ei2p( fx+ fyy)

+ei2p( fx+ fyy) ∂ 2U( fx, fy,z)
∂ z

+ k2U( fx, fy,z)ei2p( fx+ fyy)] d fxd fy = 0

) ∂ 2U
∂ z2 +

⇥
k2 �4p2 � f 2

x + f 2
y
�⇤

U = 0

) ∂ 2U
∂ z2 +a2U = 0 (2.20)

where, a =
q

k2 �4p2
�

f 2
x + f 2

y
�
. The solution of the above differential equation can be writ-

ten as:

U( fx, fy,z) = A( fx, fy)eiaz +B( fx, fy)e�iaz (2.21)

When a2 > 0, i.e. k2 > 4p2 � f 2
x + f 2

y
�
, we have the following constraint on the spatial fre-

quencies:

f 2
x + f 2

y <
1

l 2 (2.22)

i.e. the spectral components for the propagating solution lies within a circle of radius 1
l .

Similarly, when a2 < 0, we get the solution of the field as a superposition of exponentially

18



decaying and exponentially growing spectral components:

U( fx, fy,z) = A( fx, fy)e�az +B( fx, fy)eaz (2.23)

However, we are interested in calculating the diffracted field for z > 0. As z ! •, the first

term in Eq. 2.23 vanishes and the second term grown unboundedly. Clearly, for a solution to be

physical, we must have B( fx, fy) = 0. At z = 0, we have A( fx, fy) = U( fx, fy,0). So, in angular

spectrum domain the solution of the diffracted field can be written as:

U( fx, fy,z) =U( fx, fy,0)eiaz (2.24)

where, a is real for spectral components within 1
l circle (corresponding to propagating solu-

tions) and becomes imaginary for spectral components outside 1
l circle giving rise to evanescently

decaying solutions. To understand the physical implications of the Eq. 2.24 better, let us consider

the spectral components situated along fy = 0 line (i.e. the fx axis). In this case, the condition to

have an evanescent solution reduces to fx >
1
l . Now the minimum spatial frequency is roughly

inverse of the maximum feature-size (Dxmax) of the diffracting object: fxmin = 1
Dxmax

. Thus, the

diffracted field from an object, whose minimum spatial frequency is greater than 1
l , will always

be evanescently decaying. In other words, for such an object we must have:

1
Dxmax

>
1
l

) Dxmax < l (2.25)

This means, an object of sub-wavelength dimension mostly gives rise to diffracted field which

is evanescent in nature. In this context we note that the structures used for experiments involv-

ing SSP contain sub-wavelength periodic features. This is an indication of the fact that angular

spectrum has the potential to qualitatively describe the nature of the SSP near-field. We probe this

issue in more details in Ch. 3.
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