Lecture 3: Conditional Probability and Stochastic Independence

IIIT Delhi
praveshb@iiitd.ac.in

August 17, 2016

Conditional Probability

- Probability given an event (B) has occurred
- Revision of belief after knowing about an event
- Definition:

$$
\begin{equation*}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \tag{1}
\end{equation*}
$$

- Equivalent to bringing a new sample space (B) whose subset is event A.

Remark

Knowing about B can actually decrease the probability of A.
Treat conditional probability with normal probability rules.

$$
P(A \cap B \mid C)=P(A \mid C)+P(B \mid C) \text {, if, } A \cap B=\varnothing
$$

Example

- Let B be the event: $\min (X, Y)=2$
- Let $\mathrm{M}=\max (X, Y), P(M=1 \mid B)$ and $P(M=2 \mid B)=$

More Examples

- Four balls are placed successively (randomly) in four cells. Given that first two balls are in different cells, what is the probability that one cell contains exactly three balls?
- A family has two children. Given that the family has a boy, what is the probability that both the children are boys?

Total Probability Theorem

- Let the sample space be divided into $H_{i}, i=1,2, \ldots N$ exclusive events.
- Then any event $\mathrm{A}=\bigcup_{i=1}^{n} A \cap H_{i}$

$$
\begin{equation*}
P(A)=\sum_{i} P\left(A \mid H_{i}\right) P\left(H_{i}\right) \tag{2}
\end{equation*}
$$

Bayes Rule: Revising Beliefs

- Prior probabilities $P\left(A_{i}\right)$
- Initial Beliefs.
- We know $P\left(B \mid A_{i}\right)$ for each i
- Wish to compute $P\left(A_{i} \mid B\right)$
- revise beliefs, given that B occurred.

$$
\begin{align*}
P\left(A_{i} \mid B\right) & =\frac{P\left(A_{i} \cap B\right)}{P(B)} \tag{3}\\
& =\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{\sum_{j} P\left(A_{j}\right) P\left(B \mid A_{j}\right)}
\end{align*}
$$

Stochastic Independence

- When $\mathbf{P}(A \mid B)=\mathbf{P}(A)$, beliefs for event A did not change when B occurred.
- If above eqn holds, events A and B are said to be independent.

$$
\begin{equation*}
\text { Defn : } \quad \mathbf{P}(A \cap B)=\mathbf{P}(A) \mathbf{P}(B) \tag{4}
\end{equation*}
$$

Conditioning may affect independence

- Conditional independence, given C, is defined as usual $\mathbf{P}(. \mid C)$
- Assume A and B are independent
- If we are told that C occurred, are A and B independent?

Example: Conditioning may affect independence

- Two unfair coins, A and B

$$
\mathbf{P}(H \mid A)=0.9, \mathbf{P}(H \mid B)=0.1
$$

- Either coin picked with equal probability
- Once we know it is coin A, are tosses independent?
- If we do not know which coin it is, are tosses independent?
- $\mathbf{P}($ toss11 $=H)$
- \mathbf{P} (toss11 $=\mathrm{H} \mid$ first 10 tosses are heads)

Independence of many events

- Collection of events are independent if information of "some" set of events does not give any information about some other set.
- Mathematical definition: Events $A_{1}, A_{2}, \ldots A_{N}$ are independent if

$$
\begin{equation*}
\mathbf{P}\left(A_{i} \cap A_{j} \cdots \cap A_{q}\right)=\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(A_{i}\right) \ldots \mathbf{P}\left(A_{i}\right) \tag{5}
\end{equation*}
$$

For all possible sets of indices $i, j, \ldots q$

Independence vs Pairwise independence

- Two independent coin tosses
- Event: A First toss gives head
- Event: B Second toss gives head
- Event: C First and second toss gives same result
- $\mathbf{P}(C)=$
- $\mathbf{P}(C \cap A)=$
- $\mathbf{P}(C \cap A \cap B)=$
- Pairwise independence does not imply joint independence!

