Continuous Random Variables: Bayes Rule, Functions of Random Variable(s)

IIIT Delhi
praveshb@iiitd.ac.in

September 30, 2016

Continuous R.V: Probability Density Function (PDF)

- $F_{X, Y}(x, y)=\mathbf{P}(X \leq x, Y \leq y)$
- $f_{X, Y}(x, y)=\frac{\partial F_{X, Y}(x, y)}{\partial x \partial y}$
- Marginals from joint : $f_{X}(x)=\int_{y} f_{X, Y}(x, y) d y$ Proof: start from the definition of Cumulative distribution.
- Conditional density $f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}$

Application of Conditional Density for Bayesian Inference

- Bayes rule for continuous case:

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{f_{X \mid Y}(x \mid y) f_{Y}(y)}{f_{X}(x)}
$$

- We dont know X, but we observe Y.
- X : some signal, "prior" $f_{X}(x)$
- Y : noisy version of X.
- $f_{Y \mid X}(y \mid x)$: model of the noise.

Discrete X, Continuous Y

- X: a discrete signal, "prior" $p_{X}(x)$
- Y : noisy version of X.
- $f_{Y \mid X}(y \mid x)$: model of the noise.

$$
\begin{gather*}
p_{X \mid Y}(x \mid y)=\frac{f_{Y \mid x}(y \mid x) P_{X}(x)}{f_{Y}(y)} \\
f_{Y}(y)=\sum_{x} p_{X}(x) f_{Y \mid x}(y \mid x) \tag{1}
\end{gather*}
$$

Discrete Y, Continuous X

- X: a continuous signal, "prior" $f_{X}(x)$
e.g: temperature on a given day
- Y : noisy version of X.
e.g: rainfall on that day.
- $P_{Y \mid X}(y \mid x)$: model of the noise.

$$
\begin{align*}
& f_{X \mid Y}(x \mid y)=\frac{p_{Y \mid x}(y \mid x) f_{X}(x)}{p_{Y}(y)} \\
& p_{Y}(y)=\int_{x} f_{X}(x) p_{Y \mid x}(y \mid x) d x \tag{2}
\end{align*}
$$

- It is a PMF or PDF of a function of one or more random variables with known probability law.
- E.g: Obtaining the pdf of $Z=\frac{X}{Y}$, if X, Y are jointly uniform (and independent).
- Two cases: Discrete and Continuous

The Continuous Case

- Two step procedure
- Get C.D.F of $Y: F_{Y}(y)=\mathbf{P}(Y \leq y)$
- Differentiate that to get

$$
f_{Y}(y)=\frac{\partial F_{Y}}{\partial y}
$$

- Example 1: X is uniform in [0,2] Find the pdf of $Y=X^{3}$
- First find $\mathbf{P}\left(X^{3}<y\right)$..
- Example 2: If your driving speed is uniform between 30 and 60 kmph . What is the P.D.F of the time taken to travel 200 kms ?
- The pdf of $a X+b$ is $\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)$

Function of two r.vs

- Find the P.D.F of $Z=\frac{Y}{X}$
- If X, Y are jointly uniform and independent in a unit square.

1. $F_{Z}(z)$ when $z<1$
2. $F_{Z}(z)$ when $z>1$

- What is the P.D.F of $Z=X+Y$ for any independent X and Y
- $f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x$

Sum of two Normal Random Variables

- Consider $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$
- If X and Y are independent
- Then $Z=X+Y$ is also normal with mean $=\mu_{1}+\mu_{2}$ and variance $\sigma_{1}^{2}+\sigma_{2}^{2}$

Sum of Random number of independent r.v.'s

- N : Number of stores visited
- X_{i} money spent in store i
- X_{i} independent of N.
- Let $Y=X_{1}+X_{2} \ldots X_{N}$

$$
\mathbf{E}[Y \mid N=n]=n \mathbf{E}[X]
$$

- What is $\mathrm{E}[Y]$

Characteristic Functions

- Like a Fourier Transform of the P.D.F.
- Define the characteristic function of a random variable X to be the complex-valued function on $t \in R$ as

$$
\begin{equation*}
\psi_{X}(t)=\mathbf{E}\left[e^{i t X}\right]=\int e^{i t x} f_{X}(x) d x \tag{3}
\end{equation*}
$$

Properties of the Characteristic Function

- ψ exists for any distribution on X
- $\psi(0)=1$
- $|\psi(t)| \leq 1$
- The characteristic function of $a+b X$ is
- The characteristic function of the convolution of two r.vs' is

