Conditional P.M.F, Expectations and Joint Distribution

IIIT Delhi
praveshb@iiitd.ac.in

August 31, 2016

Conditional P.M.F

- Random variable X has P.M.F $p_{X}(x)$
- A is an event
- Conditional P.M.F - $p_{X \mid A}(x)=\mathbf{P}(X=x \mid A)$
- All properties of P.M.Fs hold the same way.

Example: Conditional P.M.F

- Let $A=\{X \geq 2\}$
- $p_{X \mid A}(x)=$
- $\mathbf{E}[X \mid A]$

Total Expectation Theorem

- Partition of sample space into disjoint events $A_{1}, A_{2} \ldots A_{N}$.
- $\mathbf{P}(B)=\mathbf{P}\left(B \mid A_{1}\right) \mathbf{P}\left(A_{1}\right)+\cdots+\mathbf{P}\left(B \mid A_{N}\right) \mathbf{P}\left(A_{N}\right)$
- $p_{X}(x)=p_{X \mid A_{1}}(x) \mathbf{P}\left(A_{1}\right)+\cdots+p_{X \mid A_{N}}(x) \mathbf{P}\left(A_{N}\right)$
- $\mathbf{E}[X]=\mathbf{E}_{X \mid A_{1}}[X] \mathbf{P}\left(A_{1}\right)+\cdots+\mathbf{E}_{X \mid A_{N}}[X] \mathbf{P}\left(A_{N}\right)$
- Mean of a Geometric r.v can be found using the above theorem

$$
\begin{gathered}
A_{1}=\{X=1\}, A_{2}=\{X>1\} \\
\mathbf{E}[X]=\mathbf{E}_{X=1}[X] \mathbf{P}(X=1)+\mathbf{E}_{X>1}[X] \mathbf{P}(X>1)
\end{gathered}
$$

- Solve for $\mathbf{E}[X]=1 / p$

Joint P.M.F

- $p_{X, Y}(x, y)=\mathbf{P}(X=x$ and $Y=y)$
- $\sum_{x} \sum_{y} p_{X, Y}(x, y)$
- Marginal distribution: $p_{Y}(y)=\sum_{X} p_{X, Y}(x, y)$
- $p_{X \mid Y}(x \mid y)=\mathbf{P}(X=x \mid Y=y)=p_{X, Y}(x, y) / p_{Y}(y)$
- $\sum_{X} p_{X, Y}(x \mid y)$

Independent Random Variables

$$
p_{X, Y, Z}(x, y, z)=p_{X}(x) p_{Y \mid x}(y \mid x) p_{Z \mid X, Y}(z \mid x, y)
$$

- Random Variables X, Y, Z are independent if:

$$
p_{X, Y, Z}(x, y, z)=p_{X}(x) p_{Y}(y) p_{Z}(z) \quad \forall x, y, z
$$

- Conditional independence works the same as "normal" independence.

Expectations

$\mathbf{E}[X]=\sum_{x} x p_{X}(x)$
$\mathbf{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$

- In general, $\mathbf{E}[g(X, Y)] \neq g(\mathbf{E}[X], \mathbf{E}[Y])$
- $\mathbf{E}[\alpha X+\beta]=\alpha \mathbf{E}[X]+\beta$
- $\mathbf{E}[X+Y+Z]=\mathbf{E}[X]+\mathbf{E}[Y]+\mathbf{E}[Z]$
- If X, Y are independent:
- $\mathbf{E}[X Y]=\mathbf{E}[Y] \mathbf{E}[X]$
- $\mathbf{E}[g(X) h(Y)]=\mathbf{E}[h(Y)] \mathbf{E}[g(X)]$

Variances

- $\operatorname{var}(\alpha X)=\alpha^{2} \operatorname{var}(X)$
- $\operatorname{var}(X+\alpha)=\operatorname{var}(X)$
- When X and Y are independent and $Z=X+Y$

$$
\begin{equation*}
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y) \tag{1}
\end{equation*}
$$

- Examples:
- If $X=Y, \operatorname{var}(X+Y)=$
- When X and Y are independent, $Z=X-3 Y$

$$
\begin{equation*}
\operatorname{var}(Z)=\operatorname{var}(X)+\ldots \tag{2}
\end{equation*}
$$

- Binomial R.V.
- Hat in the ring problem.

