Lecture 4: Random Variables, Discrete PMFs, Expectation and Variance

IIIT Delhi

praveshb@iiitd.ac.in
August 26, 2016

Random Variable

- R.V's is way of assigning numerical values to outcomes
- Function from sample space Ω to Real line R.
- Can have multiple random variable coming from the same sample space.
- Note: Its not a variable, its a function, $f_{X}(x)$
- X denotes the function, x a specific value in the range.

Example: R.V.s

- Perform an experiment: Four coin tosses
- Possible Variables: Number of heads, number of tales, number of consecutive heads....
- Sample the height of this class.
- Interest is to find the likelihood of each value of this variable.

Probability Mass Function (PMF)

- Tells us the probability distribution of X
- Notation:

$$
\begin{align*}
p_{X}(x) & =\mathbf{P}(X=x) \tag{1}\\
& =\mathbf{P}(\{w \in \Omega, \text { s.t, } X(w)=x\})
\end{align*}
$$

- "Probability of those Sample Space points whose random variable function value is $x^{\prime \prime}$
- $p_{X}(x) \geq 0, \sum_{x} p_{X}(x)=1$

Examples of PMFs

- Bernoulli PMF or Bernoulli Distribution:
- A random variable is called Bernoulli r.v if it can take only two possible values.
- $p_{X}(1)=p, p_{X}(0)=1-p$
- Example: head or tail on one coin toss
- Binomial PMF or Binomial Distribution:
- R.V: The number of successes (or 1's) in n Bernoulli trials.
- $p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ (How ?)
- Number of heads in " n " coin tosses
- Can be extended to "multinomial" distribution

Examples of PMFs

- Poisson Distribution
- Bernoulli Trials: n large, p small, $\lambda=n p$
- Poisson distribution approximates Binomial
- $p_{X}(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}$
- Geometric:
- k is the first time a head occurs during a repeated coin toss.
- $p_{X}(k)=(1-p)^{k-1} p$

More Examples

- Birthdays: Probability that in a company of 500, exactly k people have birthdays on a particular day?
- Misprints: If there is a constant prob. of any letter being misprint, then we have as many Bernoulli trials as there are letters. Total number of misprints in a page is approximately Poisson.
- -Defective items: Small probability of any item in a box being defective. What is the probability that no defective items in the box of 100 items.

Expectation of a Random Variable

- Whats a typical value a R.V takes? One good answer: its expectation.
- Definition:

$$
\mathbf{E}[X]=\sum_{x} x p_{X}(x)
$$

- Examples:
- Expectation of a Bernoulli r.v $=p$
- Expectation of a Binomial r.v $=n p$ Interpretation: $n p$ successes in n trials
- Expectation of a Poisson r.v $=\lambda$

Properties of Expectations

- Let X be a r.v and let $Y=g(X)$
- $\mathbf{E}[Y]=\sum_{x} g(x) p_{X}(x)$
- $\mathbf{E}[\alpha]=\alpha$
- $\mathbf{E}[\alpha X]=\alpha \mathbf{E}[X]$

Variance of a R.V

- Indicates the spread of an r.v.

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbf{E}\left[(x-\mathbf{E}[X])^{2}\right] \\
& =\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}
\end{aligned}
$$

- Standard deviation $\sigma_{X}=\sqrt{\operatorname{var}(X)}$
- Examples:
- Variance of Bernoulli, Poisson and Binomial r.vs are?
- Notion of mean square error of an estimate!
- Properties:

$$
-\operatorname{var}\{\alpha X\}=\alpha^{2} \operatorname{var}\{X\}
$$

