Lecture 2: Counting

IIIT Delhi
praveshb@iiitd.ac.in

August 10, 2016

Basic Principles of Counting

- r stages
- n_{i} choices at stage i
- Total number of choices is: $n_{1} n_{2} \ldots n_{r}$
- Example: How many license plates with 3 letters and 4 digits?
- Example: How many ways r balls can be placed in n cells?
- Example: How many subsets from a set $S=\{1,2, \ldots, n\}$
- What if no repetition is allowed(first example)?

Ordered Samples: Permutations

- For a population of n elements, and a prescribed sample size r, there exists n^{r} samples with replacement and $(n)_{r}$ without replacement.
- Number of ways of ordering n elements is n !

Ordering: Examples with Probability Calculation

- In sampling without replacement what is the probability for any fixed element of the population to be included in a sample of size r ?
- If n balls are randomly placed in n cells, the probability that each cell will be occupied is?
- In a room filled with r people, what is the probability that no group has a common birthday?

Partitions: Combinations

- $\binom{n}{k}$: number of k element subsets of a given n element set.
- When order is not important!
- $\binom{n}{k}=\frac{n!}{k!(n-k)!}$

1. Pick any k elements from the set and make k ! arrangements.
2. $(n)_{k}$ total arrangements.
3. $\binom{n}{k}=\frac{(n)_{k}}{k!}$

- Also called the binomial coefficient.

Partitions: Examples

- How many ways can we pick r elements from a n element set?
- Occupancy Problem: Consider a random allotment of r balls in n cells. What is the Prob. that a specified cell contains exactly k balls?
- Consider a set with p indistinguishable elements of one type and q indistinguishable elements of another type. What is the number of ways in which the set can be arranged?

Partitions: Occupancy Problems

Consider r indistinguishable balls to be put in n cells such that r_{i} is the number of balls in the $i^{t h}$ cell.

$$
\begin{equation*}
r_{1}+r_{2}+\ldots r_{n}=r \tag{1}
\end{equation*}
$$

- The number of distinguishable distributions (that is the number of different solutions of (1) is

$$
A_{r, n}=\binom{n+r-1}{r}
$$

- The number of distinguishable distributions in which no cell remains empty is $\binom{r-1}{n-1}$

Indistinguishable Objects: More Examples

- There are $\binom{r+5}{5}$ distinguishable results of a throw with r indistinguishable dice.
- Bose Einstein and Fermi Dirac statistics: The probability that cells numbers $1,2, \ldots n$ contain $r_{1}, r_{2} \ldots r_{n}$ balls, respectively (where $\sum r_{i}=r$) is given by $\frac{1}{A_{r, n}}$ and it is equal to $\binom{n}{r}^{-1}$ under Fermi-Dirac statistics provided r_{j} equals 0 or 1 .

Stirling's Formula

$$
n!\approx \sqrt{2} n^{n+\frac{1}{2}} e^{-n}
$$

- 1 ! is 0.9221
- The percentage error decreases rapidly as the value of n increases.

