Markov Chains

IIIT Delhi

praveshb@iiitd.ac.in

November 16, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $1 \, / \, 11$

Checkout Counter Model

- Discrete time $n = 0, 1 \dots$
- Customer Arrivals: Bernoulli(p), geoemtric interarrival
- Customer Service times: Geometric(q)
- State X_n: number of customers at time n.

Finite State Markov Chains

- ► X_n: state after *n* transitions
- ► Each state belongs to finite set, 1,2...m
- Markov property: given current state, the past does not matter

$$p_{ij} = \mathbf{P} (X_{n+1} = j \mid X_n = i)$$
$$p_{ij} = \mathbf{P} (X_{n+1} = j \mid X_n = i, X_{n-1}, \dots X_0)$$

イロン イロン イヨン イヨン 三日

3/11

- Model specifications
 - Identify the possible states
 - Identify the possible transitions
 - Identify the transitions probabilities

n-step transition probabilities

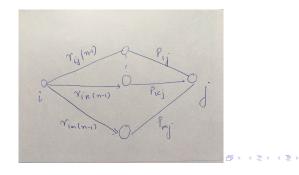
State occupancy probabilities, given initial state i

$$r_{ij}(n) = \mathbf{P}(X_n = j \mid X_0 = i)$$

• Key recursion: $r_{ij}(n) = \sum r_{ik}(n-1)p_{kj}$

With random initial state

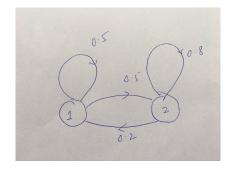
$$\mathbf{P}(X_n = j) = \sum_{i=1}^m \mathbf{P}(X_0 = i)r_{ij}(n)$$



An Example

A wireless packet communications channel suffers from clustered errors. That is, whenever a packet has an error, the next packet will have an error with probability 0.9. Whenever a packet is error free, the next packet is error free with probability 0.99. When $X_n = 1$ if the n^{th} packet has an error; otherwise, $X_n = 0$. Sketch the chain and find the transition probability matrix.

Example 2



For a finite Markov chain with transition matrix ${\bf P}$, the n step transition matrix is

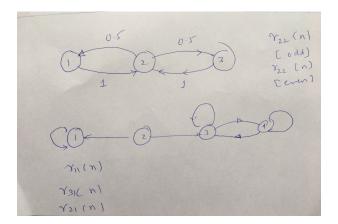
$$\mathbf{P}(n) = \mathbf{P}^n \tag{1}$$

イロン イヨン イヨン イヨン 三日

7/11

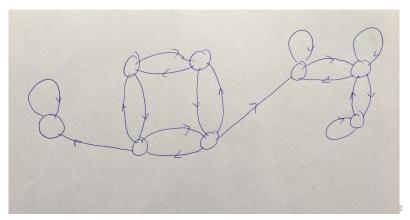
Generic Convergence Questions

- Do the $r_{ij}(n)$ converge to π_j (independent of *i*).
- Does the limit depends on the initial state?



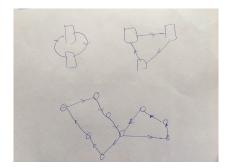
Recurrent and Transient States

- State *i* is recurrent, if: starting from *i*, and from wherever you can go, there is a way of returning to *i*
- If not recurrent, called transient.
- Recurrent Class: Collection of recurrent states that communicate with each and with no other state.



Periodic States

- The states in a recurrent class are periodic if they can be grouped into d > 1 groups so that all transitions from one group lead to the next group.
- Self transition is not periodic.



Steady State Probabilities

- Do the $r_{ij}(n)$ converge to π_j ?
- Yes, if:
 - recurrent states are all in a single class, and,
 - Single recurrent class is not periodic
- Assuming, yes, start with from key recursion

$$r_{ij}(n) = \sum r_{ik}(n-1)p_{kj}$$

• Take limit $n \to \infty$ $\pi_i = 1$

$$\pi_j = \sum \pi_k p_{kj}$$

• additional equation $\sum \pi_j = 1$

Birth Death Process