Lecture 1

IIIT Delhi
praveshb@iiitd.ac.in

August 3, 2016

Course Information: PRP

- Class Hours : Wed: 11:30 to 12:45, Fri: 10:00 to 11:15
- Office Hours: Thursday: 1:00 to 2:00 P.M
- TAs: TBD
- Website: www.iiitd.edu.in/~praveshb/teaching.html
- Textbooks:

1. An Introduction to Probability Models by Sheldon Ross
2. Probability and Stochastic Processes : a friendly introduction for electrical and computer engineers, by Roy Yates and David Goodman
3. An Introduction to Probability, Volume 1, by William Feller.

Grading Scheme

- Quiz: 4×10 2 before Mid sem.
- Mid Sem: 25
- End Sem: 35
- Assignments: Ungraded

Assignments will be checked by peers. Those questions not solved by anybody will be solved by me.

- Effort: 9 hrs per week. 3 (lectures) +4 (exercises) +2 (discussion)

Maximising effort can lead to maximisation of grades.

Sample Space

- Set of possible outcomes during an experiment
- Lists (Set):
- Mutually Exclusive
- Collectively Exhaustive
- Examples:
- Discrete: Coin, Dice
- Continuous:
- Choice of sample space is the key - depends on the problem.

Example of a Discrete Sample Space

- Two rolls of a tetrahedral dice
- Two ways of looking at the sample space

Example of a Continuous Sample Space

A dart board!

$$
\Omega=\{x, y \mid 0<x<1,0<y<1\}
$$

Event Space

- Event: A subset of a sample space
- Which outcome is more likely ?
- Assign probabilities to events
- What is the probability of a dart hitting a certain point in the board?

Sample Space and Event Space: Examples

- A family with 4 children. Event: The first and the fourth are boys.
- An elevator carries two persons and stops at three floors. Event: they get off at different floors.
- Experiment: Coin tosses. Sample space of encountering heads for the first time.
- Temperature at 11:00 A.M today! Event: Hot (temp above $30 \mathrm{deg})$.

Probability Axioms

- Assign probability to subsets of sample space
- Axioms:

1. Non negativity: $P(A) \geq 0$
2. Normalisation: $P(\Omega)=1$
3. Additivity: $P(A \cup B)=P(A)+P(B)$, if, $A \cap B=\emptyset$

- Do we need an extra axiom?
- What about the probability of union of three events?
- Can we take the argument to any set?

Probability Axioms: Example

- Let every possible outcome have probability of $\frac{1}{6}$

1. $P(X, Y)$ is $(1,1)$ or $(1,2)$
2. $P(X=1)$ is
3. $P(X+Y)$ is odd is
4. $P(\min (X, Y)=2)$ is

Probability Axioms: Examples

- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Hence, $P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)$

Discrete Uniform Law

- Let all outcomes are equally likely
- Then, $P(A)=\frac{\text { number of elements of } \mathrm{A}}{\text { total number of sample points }}$
- Computing probabilities is the same as counting
- Example: Coints, fair dice etc.
- Sample space: $\{1,2, \ldots\}$
- Given $P(n)=\frac{1}{2^{n}}$
- Find P (outcome is even)
- $P(2,4,6, \ldots)=P(2)+P(4)+\cdots=\frac{1}{2^{2}}+\frac{1}{2^{4}} \ldots=\frac{1}{3}$

Probability Law: Continuous Space

A dart board!

$$
\Omega=\{x, y \mid 0<x<1,0<y<1\}
$$

- What is the probability that the dart was hit at the lower half of the square?
- Counting the points not enough !
- Uniform Law $==$ Area !
- Notion of measure of an event!

