PRP Assignment 5

1. Show that if

$$
\begin{gathered}
\mathrm{x}_{i} \geq 0, \quad E\left\{\mathrm{x}_{i}^{2}\right\}=M \quad \text { and } \mathrm{s}=\sum_{i=1}^{n} \mathrm{x}_{i} \quad \text { then } \\
E\left\{\mathrm{~s}^{2}\right\} \leq M E\left\{\mathrm{n}^{2}\right\} .
\end{gathered}
$$

2. Show that if the random variables x_{i} are i.i.d. and normal, then their sample mean $\overline{\mathrm{x}}$ and sample variances s^{2} are two independent random variables.
3. We place at random n points in the interval $(0,1)$ and we denote by x and y the distance from the origin to the first and the last point respectively. Find $F(x), F(y)$, and $F(x, y)$.
4. Let S_{n} be the number of successes in n Bernoulli trials (independent), where the probability of success in one trial $p=0.4$. When $n \rightarrow \infty$, provide a value for the probability that S_{n} is between $\frac{n}{2}-10$ to $\frac{n}{2}+10$.
5. Let X_{1}, X_{2}, \ldots be i.i.d. positive random variables with mean 5 . Let Y_{1}, Y_{2}, \ldots be i.i.d. positive random variables with mean 7 . Show that

$$
\frac{X_{1}+X_{2}+\ldots . X_{n}}{Y_{1}+Y_{2}+\ldots . . Y_{n}} \rightarrow \frac{5}{7}
$$

with probability 1. Does it matter whether the X_{i} are independent of the Y_{j} ?
6. For i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with mean μ and variance 2 , give a value of n (as a specific number) that will ensure that there is at least 98% chance that the sample mean will be within 2 standard deviations of the true mean μ.
7. Let $Y=e^{X}$ with $\mathrm{X} \sim \operatorname{Exp}(3)$. For i.i.d random variables $Y_{1}+Y_{2}+\ldots . . Y_{n}$, find the distribution of sample mean $\left(\overline{\mathrm{Y}}_{n}=\frac{1}{n} \sum_{j=1}^{n} Y_{j}\right)$ when n is large.

