PRP Assignment 5

1. Show that if

$$\mathbf{x}_i \ge 0, \quad E\{\mathbf{x}_i^2\} = M \quad \text{and} \quad \mathbf{s} = \sum_{i=1}^n \mathbf{x}_i \quad \text{then}$$

 $E\{\mathbf{s}^2\} \le M E\{\mathbf{n}^2\}.$

- 2. Show that if the random variables x_i are i.i.d. and normal, then their sample mean \bar{x} and sample variances s^2 are two independent random variables.
- 3. We place at random n points in the interval (0, 1) and we denote by x and y the distance from the origin to the first and the last point respectively. Find F(x), F(y), and F(x, y).
- 4. Let S_n be the number of successes in *n* Bernoulli trials (independent), where the probability of success in one trial p = 0.4. When $n \to \infty$, provide a value for the probability that S_n is between $\frac{n}{2} - 10$ to $\frac{n}{2} + 10$.
- 5. Let $X_1, X_2,...$ be i.i.d. positive random variables with mean 5. Let $Y_1, Y_2,...$ be i.i.d. positive random variables with mean 7. Show that

$$\frac{X_1+X_2+\ldots,X_n}{Y_1+Y_2+\ldots,Y_n} \to \frac{5}{7}$$

with probability 1. Does it matter whether the X_i are independent of the Y_i ?

- 6. For i.i.d. random variables $X_1, X_2, ..., X_n$ with mean μ and variance 2, give a value of n (as a specific number) that will ensure that there is at least 98% chance that the sample mean will be within 2 standard deviations of the true mean μ .
- 7. Let $Y = e^X$ with $X \sim \text{Exp}(3)$. For i.i.d random variables $Y_1 + Y_2 + \dots + Y_n$, find the distribution of sample mean $(\overline{Y}_n = \frac{1}{n} \sum_{j=1}^n Y_j)$ when n is large.