Engineering Optimization

ECE305/ECE505/MTH3EO/MTH5EO
 Assignment 1

August 20, 2015

1. Prove that a list of vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others.
2. Show that if U and W are subspaces of the vector space V, then $U+W=$ $\{\mathbf{u}+\mathbf{w}: \mathbf{u} \in U, \mathbf{w} \in W\}$ is also a subspace of V. Furthermore, show that $U+W$ is the smallest subspace of V that contains both U and W.
3. Given any two $m \times n$ matrices A and B, prove that $\operatorname{rank}(A+B) \leq$ $\operatorname{rank}(A)+\operatorname{rank}(B)$.
4. Let λ be an eigenvalue of an invertible matrix A, show that λ^{-1} is an eigenvalue of A^{-1}.
5. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 2
\end{array}\right]
$$

(a) Find the SVD of A.
(b) Find a basis for $\operatorname{Col} A$ and $\operatorname{Row} A$.
(c) Find a basis for $N u l A$ and $N u l A^{T}$.
6. Find the Hessian of the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{4}+\left(x_{1}+x_{2}\right)^{2}+\left(x_{1}+x_{3}\right)^{2}$. Is the Hessian PSD?
7. Show from the eigenvalues that if A is positive definite, so are A^{2} and A^{-1}.
8. Prove that if A is an $n \times n$ square matrix, then $|A|= \pm \sigma_{1} \sigma_{2} \ldots \sigma_{n}$.
9. For what values of k, will the following matrices be positive definite :
(a)

$$
A=\left[\begin{array}{cc}
2 & -4 \\
-4 & k
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{cc}
k & 5 \\
5 & -2
\end{array}\right]
$$

10. Suppose that A and B are positive definite matrices. Show that
(a) $A+B$ is positive definite
(b) $k A$ is positive definite, for $k>0$
11. Let $A \in \mathbb{M}_{n}$ be self-adjoint. Show that

$$
U=(I-i A)(I+i A)^{-1}
$$

is a unitary. (U is the Cayley transform of A.)
12. Let $m \leq n, A \in \mathbb{M}_{n}, B \in \mathbb{M}_{m}, Y \in \mathbb{M}_{n \times m}$ and $Z \in \mathbb{M}_{m \times n}$. Assume that A and B are invertible. Show that $A+Y B Z$ is invertible if and only if $B^{-1}+Z A^{-1} Y$ is invertible. Moreover,

$$
(A+Y B Z)^{-1}=A^{-1}-A^{-1} Y\left(B^{-1}+Z A^{-1} Y\right)^{-1} Z A^{-1} .
$$

13. The $n \times n$ Pascal matrix is defined as

$$
P_{i j}=\binom{i+j-2}{i-1} \quad(1 \leq i, j \leq n) .
$$

What is the determinant?
14. Frobenius' inequality: Let $A: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}, B: \mathcal{H}_{3} \rightarrow \mathcal{H}_{2}$ and $C: \mathcal{H}_{4} \rightarrow \mathcal{H}_{3}$ be linear mappings. Show that

$$
\operatorname{rank} A B+\operatorname{rank} B C \leq \operatorname{rank} B+\operatorname{rank} A B C .
$$

