Unconstrained Optimization

Pravesh Biyani

IIIT Delhi

September 15, 2014

Outline

- Definitions
- Unconstrained minimization
- First and second order optimality conditions
- First algorithm: gradient descent
- Least square regression.

Definitions

- Local minimum $x^{*}: \exists \epsilon>0$ s.t $f(x) \geq f\left(x^{*}\right)$, for all $\left\|x-x^{*}\right\|<\epsilon$.
- Strict local minimum $x^{*}: \exists \epsilon>0$ s.t $f(x)>f\left(x^{*}\right)$, for all $\left\|x-x^{*}\right\|<\epsilon$.
- Global minimum: $f(x) \geq f\left(x^{*}\right)$, for all $x \in \Re^{n}$.
- Geometrically ?

Relaxation and Approximation

- The simplest goal is to find local minimum of a differential function
- Majority of methods based on the idea of relaxation.
- Generate a sequence $f\left(x_{k}\right)_{k=0}^{k=\infty}$ such that
- Advantages
- If $f(x)$ is lower bounded, convergence is guaranteed.
- We decrease the objective function in every step.
- Optimality Conditions useful in reducing the search for the optimal.

Approximations

A first order local approximation:

$$
f(y)=f\left(x_{0}\right)+\left\langle f^{\prime}\left(x_{0}\right), y-x_{0}\right\rangle+O\left(\left\|y-x_{0}\right\|\right)
$$

where, $O(r)$ is a vector valued function such that

$$
\lim _{r \rightarrow 0} \frac{1}{r} O(r)=0
$$

The direction $-f^{\prime}(x)$ is the direction of the fastest local decrease of the function at x. Proof?

First Order Optimality Condition

Theorem
Let x^{*} be a local minimum of differentiable function $f(x)$. Then,

$$
f^{\prime}\left(x^{*}\right)=0 .
$$

- Only a necessary condition.
- Points satisfying this condition called stationary points.
- Examples: least square, $x^{3}, x^{2}-x^{4}$

Second Order Optimality Condition

If the function $f(x)$ be twice differentiable.

$$
f(y)=f\left(x_{0}\right)+\left\langle f^{\prime}\left(x_{0}\right), y-x_{0}\right\rangle+\left\langle f^{\prime \prime}\left(x_{0}\right)\left(y-x_{0}\right), y-x_{0}\right\rangle+O\left(\left\|y-x_{0}\right\|^{2}\right)
$$

The quadratic function above is the second order approximation. $f^{\prime \prime}\left(x_{0}\right)$ is also called Hessian. It is a symmetric matrix.

Theorem
Let x^{*} be a local minimum of differentiable function $f(x)$. Then,

$$
f^{\prime}\left(x^{*}\right)=0, \quad f^{\prime \prime}\left(x^{*}\right) \succcurlyeq 0 .
$$

Necessary and Sufficient Conditions

Theorem
Let function $f(x)$ be twice differentiable and let x^{*} satisfy the following conditions:

$$
f^{\prime}\left(x^{*}\right)=0 \quad f^{\prime \prime}\left(x^{*}\right) \succ 0
$$

Then x^{*} is a strict local minimum of $f(x)$.

Proposition: There exist scalars $\gamma>0$ and $\epsilon>0$ such that

$$
f(x)>f\left(x^{*}\right)+\gamma / 2\left\|x-x^{*}\right\|^{2}, \quad\left\|x-x^{*}\right\|<\epsilon
$$

Algorithm: Gradient Method

$$
\begin{aligned}
\text { Choose : } & x_{0} \in R^{n} \\
\text { Iterate : } & x_{k+1}=x_{k}-h_{k} f^{\prime}\left(x_{k}\right) \quad k=0,1, \ldots
\end{aligned}
$$

h_{k} is called the step size.
Can be chosen in advanced or can adapt.
Does the gradient method converge to the local minima always?

Generalizing the Gradient Methods

- One can consider a half line of vectors

$$
x_{\alpha}=x+\alpha d \quad \forall \alpha>0
$$

where the direction $d \in R^{n}$ makes an angle with $\nabla f(x)$ that is greater than 90 degrees that is,

$$
\nabla f(x)^{T} d<0
$$

- Leading to the following algo:

$$
\begin{aligned}
\text { Choose : } & x_{0} \in R^{n} \\
\text { Iterate : } & x_{k+1}=x_{k}-\alpha_{k} H_{k} d_{k} \quad k=0,1, \ldots
\end{aligned}
$$

- D_{k} is a PSD matrix

Line Search: How to choose the stepsize

Two simple line search mechanisms.
Exact Line Search: $t=\arg \min _{s>0} f(x+s d)$
Find the line which has maximum decrease in the objective function for a given descent direction v.
Backtracking Line Search $0<\beta<1,0<\alpha<0.5$

- starting with $t=1, t=\beta t$
- until $f(x+t d)<f(x)+t \alpha f^{\prime}(x)^{T} d$
- Also called Armijo rule.

Diminishing Step Size: $h_{k} \rightarrow 0$ but $\sum h_{k}=\infty$

The Newton Step

The Newton step at x_{k} is

$$
x_{k+1}=x_{k}-f^{\prime \prime}\left(x_{k}\right)^{-1} f^{\prime}\left(x_{k}\right)
$$

- Minimizes the second order expansion at x at every step.
- Convergence is faster than a simple gradient descent.
- Can be combined with backtracking or exact line search.
- Variants: damped newton and Quasi-Newton.

Convergence Results - key insights

- Generally gradient method is slow, but converges with exact or back tracking line search.
- Newton method converges rapidly (quadratic) when $\nabla^{2} f(x) \geq m l$
- A constant step size method requires stricter conditions for convergence also called Lipschitz conditions

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|
$$

- Lipschitz condition also helps in diminishing step size case.

Convergence for a constant step size

 Let $\left\{x_{k}\right\}$ be a sequence generated by a gradient method $x_{k+1}=x_{k}+\alpha_{k} d$. Assume that for some constant $L>0$, we have$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\| \quad \forall x, y \in R^{n}
$$

and that for all k we have $d_{k} \neq 0$ and

$$
\epsilon \leq \alpha_{k} \leq(2-\epsilon) \hat{\alpha_{k}}
$$

where

$$
\hat{\alpha_{k}}=\frac{\left|\nabla f\left(x_{k}\right)^{T} d_{k}\right|}{L\left\|d_{k}\right\|^{2}}
$$

Then every limit point of $\left\{x_{k}\right\}$ is a stationary point of f.

- For steepest descent, the condition on α_{k} is

$$
\epsilon \leq \alpha_{k} \leq \frac{2-\epsilon}{L}
$$

Some Examples

- Unconstrained Quadratic Minimization

$$
\min \quad x^{\top} P x+2 q^{\top} x+r
$$

- Unconstrained Geometric Programming

$$
\min \log \sum_{i=1}^{m} e^{a_{i}^{T} x+b_{i}}
$$

Conjugate Direction Methods

- Generally used for quadratic minimization problems.
- Faster than steepest descent, avoiding overhead of Newton methods.

$$
\min \frac{1}{2} x^{\top} Q x-b^{T} x
$$

- Equivalently solve $Q x=b$. (Q is PSD).
- Conjugate direction method solves in atmost N iterations.

Conjugate Direction..

- Vectors $d_{1}, d_{2} \ldots d_{k}$ are Q conjugate if,

$$
d_{i}^{T} Q d_{j}=0 \quad \forall i \neq j
$$

- And they are also linearly independent !!

Conjugate direction method:

$$
\begin{aligned}
\text { Choose : } & x_{0} \in R^{n} \\
\text { Iterate : } & x_{k+1}=x_{k}+\alpha_{k} d_{k} \quad k=0,1, \ldots \\
\alpha_{k}(\text { LineSearch }): & \min _{\alpha} f\left(x_{k}+\alpha d_{k}\right)
\end{aligned}
$$

Conjugate Direction ..

- Successive iterates minimizes f over a progresively expanding space that eventually includes the global minimum of a quadratic f.
- Eventually easy to show that

$$
x_{k+1}=\arg \min _{x \in M^{k}} f(x)
$$

where,

$$
M_{k}=\left\{x \mid x_{0}+v, \quad v \in\left\{\text { subspace spanned by } d_{0}, d_{1} \ldots d_{k}\right\}\right\}
$$

From Conjugate Direction to CG

- How to generate Conjugate directions?
- Gram Schmidt Orthonalization:
- Take any set of linearly independent vectors $u_{0}, u_{1} \ldots u_{n-1}$ and generate Q conjugate directions using them!
- CG method is obtained by applying the GS procedure to the gradient vectors $u_{k}=-g_{k}=-\nabla f\left(x_{k}\right)$..

$$
\begin{gathered}
g_{k}=Q x_{k}-b \\
d_{k}=-g_{k}+\sum_{i=0}^{k-1} \frac{g_{k}^{T} Q d_{i}}{d_{i}^{T} Q d_{i}} d_{i}
\end{gathered}
$$

CG Method

CG method:

Choose: $x_{0} \in R^{n}$
Iterate : $\quad x_{k+1}=x_{k}+\alpha_{k} d_{k} \quad k=0,1, \ldots$

$$
d_{k}: \quad d_{k}=-g_{k}+\beta_{k} d_{k-1}
$$

$$
\beta_{k}: \quad \beta_{k}=\frac{g_{k}^{T} g_{k}}{g_{k-1}^{T} g_{k-1}}
$$

