Unconstrained Optimization

Pravesh Biyani

IIIT Delhi

September 15, 2014

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Definitions
- Unconstrained minimization
- First and second order optimality conditions
- First algorithm: gradient descent
- Least square regression.

Definitions

- ► Local minimum x^* : $\exists \epsilon > 0$ s.t $f(x) \ge f(x^*)$, for all $||x x^*|| < \epsilon$.
- ► Strict local minimum x^* : $\exists \epsilon > 0$ s.t $f(x) > f(x^*)$, for all $||x x^*|| < \epsilon$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Global minimum: $f(x) \ge f(x^*)$, for all $x \in \Re^n$.
- Geometrically ?

Relaxation and Approximation

- The simplest goal is to find local minimum of a differential function
- Majority of methods based on the idea of relaxation.
- Generate a sequence $f(x_k)_{k=0}^{k=\infty}$ such that
- Advantages
 - If f(x) is lower bounded, convergence is guaranteed.
 - We decrease the objective function in every step.
- Optimality Conditions useful in reducing the search for the optimal.

Lecture 2

Approximations

A first order *local* approximation:

 $f(y) = f(x_0) + \langle f'(x_0), y - x_0 \rangle + O(||y - x_0||)$

where, O(r) is a vector valued function such that

 $\lim_{r\to 0}\frac{1}{r}O(r)=0$

The direction -f'(x) is the direction of the *fastest local* decrease of the function at *x*. Proof ?

First Order Optimality Condition

Theorem

Let x^* be a local minimum of differentiable function f(x). Then,

 $f'(x^*)=0.$

- Only a necessary condition.
- Points satisfying this condition called stationary points.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Examples: least square, x^3 , $x^2 - x^4$

Second Order Optimality Condition

If the function f(x) be twice differentiable.

 $f(y) = f(x_0) + \langle f'(x_0), y - x_0 \rangle + \langle f''(x_0)(y - x_0), y - x_0 \rangle + O(||y - x_0||^2)$

The quadratic function above is the second order approximation. $f''(x_0)$ is also called Hessian. It is a symmetric matrix.

Theorem

Let x^* be a local minimum of differentiable function f(x). Then,

 $f'(x^*)=0, \quad f^{''}(x^*) \succ 0.$

Necessary and Sufficient Conditions

Theorem

Let function f(x) be twice differentiable and let x^* satisfy the following conditions:

 $f'(x^*) = 0 \quad f''(x^*) \succ 0.$

Then x^* is a strict local minimum of f(x).

Proposition: There exist scalars $\gamma > 0$ and $\epsilon > 0$ such that

$$f(x) > f(x^*) + \gamma/2||x - x^*||^2, \quad ||x - x^*|| < \epsilon$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Algorithm: Gradient Method

Choose: $x_0 \in \mathbb{R}^n$ Iterate: $x_{k+1} = x_k - h_k f'(x_k)$ k = 0, 1, ...

 h_k is called the step size.

Can be chosen in advanced or can adapt.

Does the gradient method converge to the local minima always?

Generalizing the Gradient Methods

One can consider a half line of vectors

$$\boldsymbol{x}_{\alpha} = \boldsymbol{x} + \alpha \boldsymbol{d} \quad \forall \alpha > \boldsymbol{0}$$

where the direction $d \in \mathbb{R}^n$ makes an angle with $\nabla f(x)$ that is greater than 90 degrees that is,

$$\nabla f(x)^T d < 0$$

Leading to the following algo:

Choose: $x_0 \in \mathbb{R}^n$ Iterate: $x_{k+1} = x_k - \alpha_k H_k d_k$ k = 0, 1, ...

• D_k is a PSD matrix

Line Search: How to choose the stepsize

Two simple line search mechanisms.

Exact Line Search: $t = \arg \min_{s>0} f(x + sd)$

Find the line which has maximum decrease in the objective function for a given descent direction v.

Backtracking Line Search $0 < \beta < 1, 0 < \alpha < 0.5$

- starting with t = 1, $t = \beta t$
- until $f(x + td) < f(x) + t\alpha f'(x)^T d$
- Also called Armijo rule.

Diminishing Step Size: $h_k \to 0$ but $\sum h_k = \infty$

The Newton Step

The Newton step at x_k is

$$x_{k+1} = x_k - f''(x_k)^{-1}f'(x_k)$$

- Minimizes the second order expansion at x at every step.
- Convergence is faster than a simple gradient descent.
- Can be combined with backtracking or exact line search.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► Variants: damped newton and Quasi-Newton.

Convergence Results – key insights

- Generally gradient method is slow, but converges with exact or back tracking line search.
- ► Newton method converges rapidly (quadratic) when $\nabla^2 f(x) \ge m \mathbf{I}$
- A constant step size method requires stricter conditions for convergence also called Lipschitz conditions

$$||\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})|| \le L||\mathbf{x} - \mathbf{y}||$$

(日) (日) (日) (日) (日) (日) (日)

Lipschitz condition also helps in diminishing step size case.

Convergence for a constant step size Let $\{x_k\}$ be a sequence generated by a gradient method $x_{k+1} = x_k + \alpha_k d$. Assume that for some constant L > 0, we have

$$||\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})|| \le L||\mathbf{x} - \mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}^n$$

and that for all *k* we have $d_k \neq 0$ and

$$\epsilon \leq \alpha_k \leq (2 - \epsilon)\hat{\alpha_k}$$

where

$$\hat{\alpha_k} = \frac{|\nabla f(x_k)^T d_k|}{L||d_k||^2}$$

Then every limit point of $\{x_k\}$ is a stationary point of f.

For steepest descent, the condition on α_k is

$$\epsilon \leq \alpha_k \leq \frac{2-\epsilon}{L}$$

Lecture 2

Some Examples

Unconstrained Quadratic Minimization

min
$$x^T P x + 2q^T x + r$$

Unconstrained Geometric Programming

min
$$\log \sum_{i=1}^{m} e^{a_i^T x + b_i}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conjugate Direction Methods

- Generally used for quadratic minimization problems.
- Faster than steepest descent, avoiding overhead of Newton methods.

min
$$\frac{1}{2}x^TQx - b^Tx$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Equivalently solve Qx = b. (*Q* is PSD).
- Conjugate direction method solves in atmost N iterations.

Conjugate Direction..

• Vectors $d_1, d_2 \dots d_k$ are Q conjugate if,

$$d_i^T Q d_j = 0 \quad \forall i \neq j$$

And they are also linearly independent !!

Conjugate direction method:

Choose: $x_0 \in \mathbb{R}^n$ Iterate: $x_{k+1} = x_k + \alpha_k d_k$ k = 0, 1, ... α_k (LineSearch): $\min_{\alpha} f(x_k + \alpha d_k)$

・ロト・四ト・日本・日本・日本・日本

Conjugate Direction ..

- Successive iterates minimizes f over a progresively expanding space that eventually includes the global minimum of a quadratic f.
- Eventually easy to show that

$$x_{k+1} = arg\min_{x\in M^k} f(x)$$

where,

 $M_k = \{x | x_0 + v, v \in \{ subspace spanned by d_0, d_1 \dots d_k \} \}$

(日) (日) (日) (日) (日) (日) (日)

From Conjugate Direction to CG

- How to generate Conjugate directions?
- Gram Schmidt Orthonalization:
- ► Take any set of linearly independent vectors u₀, u₁... u_{n-1} and generate Q conjugate directions using them!
- CG method is obtained by applying the GS procedure to the gradient vectors u_k = −g_k = −∇f(x_k)..

$$g_k = Qx_k - b$$

$$d_k = -g_k + \sum_{i=0}^{k-1} rac{g_k^T \mathcal{Q} d_i}{d_i^T \mathcal{Q} d_i} d_i$$

◆□→ ◆□→ ◆三→ ◆三→ 三三 → ○○◇

Lecture 2

CG Method

CG method:

Choose: $x_0 \in \mathbb{R}^n$ Iterate: $x_{k+1} = x_k + \alpha_k d_k$ k = 0, 1, ... d_k : $d_k = -g_k + \beta_k d_{k-1}$ β_k : $\beta_k = \frac{g_k^T g_k}{g_{k-1}^T g_{k-1}}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@