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Outline

I Definitions
I Unconstrained minimization
I First and second order optimality conditions
I First algorithm: gradient descent
I Least square regression.
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Definitions

I Local minimum x∗: ∃ε > 0 s.t f (x) ≥ f (x∗), for all
||x − x∗|| < ε.

I Strict local minimum x∗: ∃ε > 0 s.t f (x) > f (x∗), for all
||x − x∗|| < ε.

I Global minimum: f (x) ≥ f (x∗), for all x ∈ <n.

I Geometrically ?
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Relaxation and Approximation

I The simplest goal is to find local minimum of a differential
function

I Majority of methods based on the idea of relaxation.

I Generate a sequence f (xk )
k=∞
k=0 such that

I Advantages
I If f (x) is lower bounded, convergence is guaranteed.

I We decrease the objective function in every step.

I Optimality Conditions useful in reducing the search for the
optimal.
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Approximations

A first order local approximation:

f (y) = f (x0) +
〈
f ′(xo), y − x0

〉
+ O(||y − x0||)

where, O(r) is a vector valued function such that

lim
r→0

1
r

O(r) = 0

The direction −f ′(x) is the direction of the fastest local
decrease of the function at x .
Proof ?
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First Order Optimality Condition

Theorem
Let x∗ be a local minimum of differentiable function f (x). Then,

f ′(x∗) = 0.

I Only a necessary condition.
I Points satisfying this condition called stationary points.
I Examples: least square, x3, x2 − x4
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Second Order Optimality Condition

If the function f (x) be twice differentiable.

f (y) = f (x0)+
〈
f ′(xo), y − x0

〉
+
〈

f
′′
(x0)(y − xo), y − x0

〉
+O(||y−x0||2)

The quadratic function above is the second order
approximation. f

′′
(x0) is also called Hessian. It is a symmetric

matrix.

Theorem
Let x∗ be a local minimum of differentiable function f (x). Then,

f ′(x∗) = 0, f
′′
(x∗) < 0.



Lecture 2

Necessary and Sufficient Conditions

Theorem
Let function f (x) be twice differentiable and let x∗ satisfy the
following conditions:

f ′(x∗) = 0 f
′′
(x∗) � 0.

Then x∗ is a strict local minimum of f (x).

Proposition: There exist scalars γ > 0 and ε > 0 such that

f (x) > f (x∗) + γ/2||x − x∗||2, ||x − x∗|| < ε
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Algorithm: Gradient Method

Choose : x0 ∈ Rn

Iterate : xk+1 = xk − hk f ′(xk ) k = 0,1, . . .

hk is called the step size.
Can be chosen in advanced or can adapt.
Does the gradient method converge to the local minima
always?
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Generalizing the Gradient Methods
I One can consider a half line of vectors

xα = x + αd ∀α > 0

where the direction d ∈ Rn makes an angle with ∇f (x) that
is greater than 90 degrees that is,

∇f (x)T d < 0

I Leading to the following algo:

Choose : x0 ∈ Rn

Iterate : xk+1 = xk − αkHkdk k = 0,1, . . .

I Dk is a PSD matrix
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Line Search: How to choose the stepsize

Two simple line search mechanisms.

Exact Line Search: t = arg mins>0 f (x + sd)

Find the line which has maximum decrease in the objective
function for a given descent direction v .

Backtracking Line Search 0 < β < 1,0 < α < 0.5
I starting with t = 1, t = βt
I until f (x + td) < f (x) + tαf ′(x)T d
I Also called Armijo rule.

Diminishing Step Size: hk → 0 but
∑

hk =∞
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The Newton Step

The Newton step at xk is

xk+1 = xk − f
′′
(xk )

−1f ′(xk )

I Minimizes the second order expansion at x at every step.
I Convergence is faster than a simple gradient descent.
I Can be combined with backtracking or exact line search.
I Variants: damped newton and Quasi-Newton.



Lecture 2

Convergence Results – key insights

I Generally gradient method is slow, but converges with
exact or back tracking line search.

I Newton method converges rapidly (quadratic) when
∇2f (x) ≥ mI

I A constant step size method requires stricter conditions for
convergence also called Lipschitz conditions

||∇f (x)−∇f (y)|| ≤ L||x − y ||

I Lipschitz condition also helps in diminishing step size case.
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Convergence for a constant step size
Let {xk} be a sequence generated by a gradient method
xk+1 = xk + αkd . Assume that for some constant L > 0, we
have

||∇f (x)−∇f (y)|| ≤ L||x − y || ∀x , y ∈ Rn

and that for all k we have dk 6= 0 and

ε ≤ αk ≤ (2− ε)α̂k

where

α̂k =
|∇f (xk )

T dk |
L||dk ||2

Then every limit point of {xk} is a stationary point of f .
I For steepest descent, the condition on αk is

ε ≤ αk ≤
2− ε

L
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Some Examples

I Unconstrained Quadratic Minimization

min xT Px + 2qT x + r

I Unconstrained Geometric Programming

min log
m∑

i=1

eaT
i x+bi
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Conjugate Direction Methods

I Generally used for quadratic minimization problems.
I Faster than steepest descent, avoiding overhead of

Newton methods.

min
1
2

xT Qx − bT x

I Equivalently solve Qx = b. (Q is PSD).
I Conjugate direction method solves in atmost N iterations.
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Conjugate Direction..

I Vectors d1,d2 . . . dk are Q conjugate if,

dT
i Qdj = 0 ∀i 6= j

I And they are also linearly independent !!

Conjugate direction method:

Choose : x0 ∈ Rn

Iterate : xk+1 = xk + αkdk k = 0,1, . . .
αk (LineSearch) : min

α
f (xk + αdk )
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Conjugate Direction ..

I Successive iterates minimizes f over a progresively
expanding space that eventually includes the global
minimum of a quadratic f .

I Eventually easy to show that

xk+1 = arg min
x∈Mk

f (x)

where,

Mk = {x |x0+v , v ∈ {subspace spanned by d0,d1 . . . dk}}
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From Conjugate Direction to CG

I How to generate Conjugate directions?
I Gram Schmidt Orthonalization:
I Take any set of linearly independent vectors u0,u1 . . . un−1

and generate Q conjugate directions using them!
I CG method is obtained by applying the GS procedure to

the gradient vectors uk = −gk = −∇f (xk )..

gk = Qxk − b

dk = −gk +
k−1∑
i=0

gT
k Qdi

dT
i Qdi

di
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CG Method

CG method:

Choose : x0 ∈ Rn

Iterate : xk+1 = xk + αkdk k = 0,1, . . .
dk : dk = −gk + βkdk−1

βk : βk =
gT

k gk

gT
k−1gk−1
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