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Definitions

v

Local minimum x*: 3¢ > 0 s.t f(x) > f(x*), for all
[|x — x*|| <e.

v

Strict local minimum x*: 3e > 0 s.t f(x) > f(x*), for all
[|x — x*|| <e.

v

Global minimum: f(x) > f(x*), for all x € R".

v

Geometrically ?
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Relaxation and Approximation

» The simplest goal is to find local minimum of a differential
function

» Majority of methods based on the idea of relaxation.

» Generate a sequence f(xx) =5 such that

» Advantages
» If f(x) is lower bounded, convergence is guaranteed.
» We decrease the objective function in every step.

» Optimality Conditions useful in reducing the search for the
optimal.
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Approximations

A first order local approximation:

f(y) = f(x0) + (f'(Xo), ¥ — Xo) + O(lly — Xoll)

where, O(r) is a vector valued function such that

.1
im, 70() =0
The direction —f'(x) is the direction of the fastest local

decrease of the function at x.
Proof ?
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First Order Optimality Condition

Theorem
Let x* be a local minimum of differentiable function f(x). Then,

f(x*) = 0.

» Only a necessary condition.

» Points satisfying this condition called stationary points.

» Examples: least square, x3, x2 — x*
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Second Order Optimality Condition

If the function f(x) be twice differentiable.

(y) = 1(x0)+(F'(X0). ¥ = x0)+{F" (Xo)(¥ = %), ¥ = X0 )+Ollly o)
The quadratic function above is the second order

approximation. " (xo) is also called Hessian. It is a symmetric
matrix.

Theorem
Let x* be a local minimum of differentiable function f(x). Then,
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Necessary and Sufficient Conditions

Theorem

Let function f(x) be twice differentiable and let x* satisfy the
following conditions:

Then x* is a strict local minimum of f(x).

Proposition: There exist scalars v > 0 and € > 0 such that

F(x) > F(x) /2l = x|, [lx = x| <e
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Algorithm: Gradient Method

Choose: xg € R"
Iterate : Xk+1 = Xk — hkf/(Xk) k=0,1,...

hy is called the step size.

Can be chosen in advanced or can adapt.

Does the gradient method converge to the local minima
always?
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Generalizing the Gradient Methods

» One can consider a half line of vectors

Xo =X+ad Ya>0
where the direction d € R" makes an angle with Vf(x) that
is greater than 90 degrees that is,
Vix)Td <0

» Leading to the following algo:

Choose: xgc R"
Iterate : Xk4+1 = Xk — akHkdy k=0,1,...

» Dy is a PSD matrix
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Line Search: How to choose the stepsize

Two simple line search mechanisms.
Exact Line Search: { = arg ming.o f(x + sd)

Find the line which has maximum decrease in the objective
function for a given descent direction v.
Backtracking Line Search 0 < 5 <1,0<a<0.5
» starting witht =1, t = gt
» until f(x + td) < f(x) + taf'(x)"d
» Also called Armijo rule.
Diminishing Step Size: hy — 0 but > hx = o
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The Newton Step

The Newton step at x is

Xk+1 = X — f”(Xk)i1 f/(Xk)

v

Minimizes the second order expansion at x at every step.

v

Convergence is faster than a simple gradient descent.

v

Can be combined with backtracking or exact line search.
Variants: damped newton and Quasi-Newton.

v
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Convergence Results — key insights

Generally gradient method is slow, but converges with
exact or back tracking line search.

Newton method converges rapidly (quadratic) when
V2£(x) > ml

A constant step size method requires stricter conditions for
convergence also called Lipschitz conditions

IVF(x) = V)l < Ll[x =yl

Lipschitz condition also helps in diminishing step size case.
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Convergence for a constant step size
Let {xx} be a sequence generated by a gradient method
Xk+1 = Xk + axd. Assume that for some constant L > 0, we
have

IVI(x) = Vi)l < Llix =yl vx,y € R
and that for all kK we have di # 0 and

Egak§(2—€)d\k
where
- [V F(x) T k|
L||dk|[2
Then every limit point of {xx} is a stationary point of f.
» For steepest descent, the condition on «y is
2—¢
L

€< ag <
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Some Examples

» Unconstrained Quadratic Minimization

min  x"Px+2g9"x+r

» Unconstrained Geometric Programming

m
. T .
min log ) €% **b
i=1
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Conjugate Direction Methods

v

Generally used for quadratic minimization problems.

Faster than steepest descent, avoiding overhead of
Newton methods.

v

min %XTQX —b'x

Equivalently solve Qx = b. (Q is PSD).
Conjugate direction method solves in atmost N iterations.

v

v
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Conjugate Direction..

» Vectors dy, 0> ... dk are Q conjugate if,

d'Qdj=0 Vi#j
» And they are also linearly independent !!

Conjugate direction method:

Choose : xg € R"
lterate : Xyi1 =X+ akdk k=0,1,...
ak(LineSearch) :  min f(x, + ady)
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Conjugate Direction ..

» Successive iterates minimizes f over a progresively
expanding space that eventually includes the global
minimum of a quadratic f.

> Eventually easy to show that
X = arg min f(x
k+1 gxeMk ( )

where,

My = {x|xo+Vv, Vv € {subspace spanned by dy,d; ...dx}}
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From Conjugate Direction to CG

v

How to generate Conjugate directions?

Gram Schmidt Orthonalization:

Take any set of linearly independent vectors ug, Uy ... Up_1
and generate Q conjugate directions using them!

CG method is obtained by applying the GS procedure to
the gradient vectors ux = —gx = —VFf(xk)..

v

v

v

gk:QXk—b

k—1 ngQd:

dk = — 0k + di
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CG method:

CG Method

Choose :
Iterate :
dy :

Bk :

Xo € R"
Xk41 =Xk +ad k=0,1,...
Ok = — gk + Bk k1
T
B, = 9y 9k

a g/z—_1gkf1
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