Engineering Optimization: Lecture 2

Pravesh Biyani

IIIT Delhi

August 11, 2014

Notations

- Scalars : a, b, c
- Vectors: a, b, c
- Matrices: A, B, C
- Matrices: $A_{i j}$ denote an element.

Vector Arithmetic

- Addition: Element wise

$$
\mathbf{a}+\mathbf{b}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)+\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
a_{3}+b_{3}
\end{array}\right), \quad \mathbf{a} \in R^{m}, \mathbf{b} \in R^{m}
$$

- Scalar Multiplication: Element wise.
- Vector Multiplication: Inner Product

$$
\mathbf{a}, \mathbf{b} \in R^{m}, \mathbf{a}^{\top} \mathbf{b}=\langle\mathbf{a}, \mathbf{b}\rangle=\sum_{i} a_{i} b_{i}
$$

- Inner product for complex vectors :

$$
\mathbf{a}, \mathbf{b} \in C^{m}, \mathbf{a}^{\mathbf{H}} \mathbf{b}=\langle\mathbf{a}, \mathbf{b}\rangle=\sum_{i} a_{i}^{*} b_{i}
$$

- Orthogonal vectors: If for any two vectors $\mathbf{x}^{\mathbf{H}} \mathbf{y}=\mathbf{0}$, then they are orthogonal.

Matrix Operations and Some Identities

- Transpose :

$$
\begin{gathered}
\left(\mathbf{A}^{\boldsymbol{\top}}\right)^{\boldsymbol{\top}}=\mathbf{A} \\
(\mathbf{A}+\mathbf{B})^{\boldsymbol{\top}}=\mathbf{A}^{\boldsymbol{\top}}+\mathbf{B}^{\boldsymbol{\top}}
\end{gathered}
$$

$$
(\mathbf{A B})^{\boldsymbol{\top}}=\mathbf{B}^{\boldsymbol{\top}} \cdot \mathbf{A}^{\boldsymbol{\top}}
$$

- Conjugate transpose $\left(\mathbf{A}^{H}\right)$ for complex matrices.
- Inverse for $\mathbf{A}, \mathbf{B} \in R^{n \times n}$

$$
\left(A^{-1}\right)^{-1}=A
$$

$(A B)^{-1}=B^{-1} A^{-1}$

System of Linear Equations

- General form of a linear equations:

$$
a_{1} x_{1}+a_{2} x_{2} \cdots+a_{n} x_{n}=b \quad \text { or } \quad \mathbf{a}^{T} \mathbf{x}=b
$$

- Simultaneous linear equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2} \cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2} \cdots+a_{2 n} x_{n}=b_{2} \\
& a_{n 1} x_{1}+a_{n 2} x_{2} \cdots+a_{n n} x_{n}=b_{n}
\end{aligned}
$$

Or,

$$
\mathbf{A x}=\mathbf{b}
$$

Linear Independence

- Linear Combination

$$
y=a_{1} x_{1}+a_{2} x_{2} \cdots+a_{n} x_{n}
$$

- Linear independence

$$
\sum_{i} a_{i} \mathbf{x}_{i}=0 \text { iff } a_{i}=0, \quad \forall i
$$

- How many linear independent vectors can exist in 1-d, 2-d.. spaces?
- Span: A collection of all possible linear combination of vectors in a given set.
- Connection between linear independence and span ?

Subspaces

- Any subset X of R^{n} is a subspace if for all $\mathbf{x}, \mathbf{y} \in X$,

$$
\alpha \mathbf{x}+\beta \mathbf{y} \in X \quad \forall \alpha, \beta \in R
$$

,

- Basis: Set of vectors which are linearly independent and whose span is a subspace.
- Examples: ?
- Is the basis of a subspace unique?
- Prove that any basis set of a subspace has same number of elements. Also called the dim of a subspace.
- Every subspace of non-zero dimension has a basis that is orthogonal.

Matrices and Subspaces

- If X is a subset of R^{n} and \mathbf{A} is an $m \times n$ matrix, then the image of X under \mathbf{A} denoted by $\mathbf{A} X$.

$$
A X=\{\mathbf{A} \mathbf{x} \mid \mathbf{x} \in X\}
$$

- If X is a subspace, so is $A X$. Proof?
- Range Space of A, denoted by $R(A)$ is the set of all $\mathbf{y} \in R^{m}$ such that $\mathbf{y}=\mathbf{A x}$ for some $\mathbf{x} \in R^{n}$.
- The Null Space of A, denoted by $N(A)$ is the set of all $\mathbf{x} \in R^{n}$ such that $\mathbf{A x}=\mathbf{0}$.

Matrix Products

- Matrix Multiplication:

$$
\begin{gathered}
\mathbf{A} \in R^{p \times m}, \mathbf{B} \in R^{m \times q}, \mathbf{a}_{i}, \mathbf{b}_{i} \in R^{m} \quad \forall i \\
\mathbf{A}=\left[\mathbf{a}_{1}, \mathbf{a}_{2} \ldots \mathbf{a}_{p}\right]^{T}, \quad \mathbf{B}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots \mathbf{b}_{q}\right] \\
\mathbf{C}=\mathbf{A B}=\left[\begin{array}{ccc}
\mathbf{a}_{1}^{T} \mathbf{b}_{1} & \ldots & \mathbf{a}_{1}^{T} \mathbf{b}_{q} \\
\ldots & \ldots & \ldots \\
\mathbf{a}_{p}^{T} \mathbf{b}_{1} & \ldots & \mathbf{a}_{p}^{T} \mathbf{b}_{q}
\end{array}\right]
\end{gathered}
$$

- Linear Combination of rows and columns

Rank of a Matrix

- Number of linearly independent columns/rows of a matrix is its rank or (dimension of $R(A)$).
- Examples: ?
- Rank \leq number of rows/columns. Proof? H.W
- Row rank is equal to column rank. Proof? H.W

Square Matrices and Eigen Values

- A square matrix is singular if its determinant is zero.
- If a matrix A is non-singular, for every non-zero $\mathbf{x} \in R^{n}$, we have $\mathbf{A x} \neq \mathbf{0}$.
- A characteristic polynomial of a square matrix A is defined by $\phi(\lambda)=\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})$.
- Roots of $\phi(\lambda)$ gives eigen values. A vector \mathbf{x} such that $\mathbf{A x}=\lambda \mathbf{x}$ is called eigen vector.
- Geometric interpretation of E.Vs?
- Eigen values of a singular matrix?
- Spectral norm of a matrix \mathbf{A}, denoted by $\rho(\mathbf{A})$ is the maximum absolute eigen value of \mathbf{A}.

Symmetric Matrices

- For real symmetric matrices we have the following properties:
- All eigen values of a real symmetric matrix are real.
- Eigen vectors corresponding to distinct eigen values are orthogonal.
- All eigen vectors are linearly independent.
- Any symmetric real matrix can be written as

$$
\mathbf{A}=\sum_{i} \lambda_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}
$$

Positive Definite Matrices

- A symmetric $n \times n$ matrix \mathbf{A} is called positive definite if $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}>\mathbf{0}$ for all $\mathbf{x} \in R^{n}$. Its called positive semi-definite if $\mathbf{x}^{\top} \mathbf{A x} \geq \mathbf{0}$ for all $\mathbf{x} \in R^{n}$.
- PSD-ness implies symmetric behaviour. Converse not true.

Singular Value Decomposition

Norms

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a norm if for all $x, y \in \mathbf{R}^{n}, t \in \mathbf{R} \mathbf{s}$

1. $f(x) \geq 0$
2. $f(t x)=|t| f(x)$
3. $f(x+y) \leq f(x)+f(y)$
$f(x)$ usually denoted as ||| | mark

Example: $\|/ /\|_{2}$, called I_{2} norm or the euclidean norm.

In general l_{p}, norms are $\|/\|_{p}, \quad p \geq 1$, where,

$$
\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

