Lecture-1

Date: 05.08.2014

- Motivation
- Why this course?
- Differentiating factor between low and high frequency circuits
- Transmission Line (Intro.)

Motivation

- Importance of RF Circuit Design
 - Wireless/Wirebased Communication Circuits → multi-band and multi-standard transceivers
 - Global Positioning System (GPS)
 - Increased clock speeds in ASICs/SoCs
- Why this course
 - Lumped no more applicable!
 - Solution? → distributed!!!

Motivation (contd.)

Design Focus in this Course

Motivation (contd.)

Why this course?

- Lumped components (wires, resistors, capacitors, inductors, connectors etc.) behave differently at low and high frequencies.
- Why?
 - current and voltage vary spatially over the component size
 - Leads to the concept of distributed components!

The KCL and KVL are no more applicable

Why this course?

- What do we mean by distributed?
 - Example Inductor

Low Frequency (Lumped)

High Frequency (Distributed)

$$Z = R + j\omega L$$

$$Z = ?$$

RF Behavior of Passive Components

- Why do inductors, capacitors, and resistors behave differently at Radio Frequency?
- What is skin effect?
- Equivalent Circuit Model?

RF Behavior of Passive Components (contd.)

For conventional AC circuit analysis:

- R is considered frequency independent
- Ideal Inductor (L) possesses an impedance $(X_L = j\omega L)$ Ideal capacitor (C) possesses an impedance $(X_C = 1/j\omega C)$

Capacitor behaves as open circuit at DC and low frequency whereas an Inductor behaves as short circuit at DC and low frequencies

RF Behavior of Resistors

At low frequency:

- Resistances, inductances, and capacitances are formed by wires, coils, and plates etc.
- Even a single wire or a copper line on a PCB possesses resistance and inductance.
- this cylindrical copper conductor has a DC resistance:

- At DC, current flows uniformly distributed over the entire conductor cross-sectional area.
- At AC, the alternating charge carrier flow establishes a magnetic field that induces an electric field (Faraday's Law) whose associated current density opposes the initial current flow → this effect is very strong at the center (r=0) where impedance is substantially increased → as a result the current flow resides at the outer periphery with the increasing frequency.

DC Current Density: $J_{z0} = \frac{I}{\pi a^2}$

- J_z drops with decrease in r (proximity to the center)
- δ decreases with increase in frequency (skin depth from periphery reduces with increased frequency) \rightarrow means the path for current conduction remains nearer to the periphery (skin effect) \rightarrow means, current density towards center decreases with increase in frequency and increase in conductivity

<u>Frequency sweep:</u> For a fixed wire radius of a = 1mm, the plot $\frac{|J_z|}{|J_{z0}|}$ as a function of depth r:

Resistors at High Frequencies

1. Carbon-composition resistors:

- Consists of densely packed dielectric particulates or carbon granules.
- Between each pair of carbon granules is very small parasitic capacitor.
- These parasitics, in aggregate, are significant → primarily responsible for notoriously poor performance at high frequencies.

Equivalent Ckt Model:

Capacitance

Wire-wound Resistors:

- Exhibit widely varying impedances over various frequencies.
- The inductor L is much larger here as compared carbon-composition to resistor.
- These resistors look like inductors → impedances will increase with increase in frequency.
- At some frequency F_r , the inductance will resonate with shunt capacitance → leads to decrease in impedance.

Equivalent Ckt Model:

► L₂: lead inductance

L₁: inductance of resistive wires

C₂: Interlead Capacitance

3. Metal-film Resistors:

Equivalent Ckt Model:

C_a models charge separation effects and C_b models interlead capacitance

- Seems to exhibit very good characteristics over frequency.
- Values of L and C are much smaller as compared to wire-wound and carbon-composition resistors.
- It works well up to 10 MHz → useful up to 100 MHz

3. Thin-film Chip Resistors:

- The idea is to eliminate or reduce the stray capacitances associated with the resistors
- Good enough up to 2 GHz.

What is the reason for following behavior of a 2000 Ω thin-film resistor?

Capacitors at High Frequencies

Equivalent Circuit Representation of a Capacitor → **for a parallel-plate**

$$C = \frac{\varepsilon A}{d} = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

At high frequency, the dielectric become lossy i.e., there is conduction current through it

Then impedance of capacitor becomes a parallel combination of C and conductance G_e

Capacitors at High Frequencies (contd.)

- Above F_r , the capacitor behaves as an inductor.
- In general, larger-value capacitors tend to exhibit more internal inductance than smaller-value capacitors.
- Therefore, it may happen that a $0.1\mu F$ may not be as a good as a 300pF capacitor in a bypass application at 250~MHz.
- The issue is due to significance of lead inductances at higher frequencies.

Capacitors at High Frequencies (contd.)

Chip Capacitors

Cross-section of a single-plate capacitor connected to the board

Inductors at High Frequencies

Equivalent Circuit Representation of an Inductor → **coil type**

Inductors at High Frequencies (contd.)

Chip Inductors

Surface mounted inductors still come as wire-wound coil →these are comparable in size to the resistors and capacitors