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Matched, Lossless, Reciprocal Devices 

A matched device is another way of saying that the input impedance at each port is
equal to Z0 when all other ports are terminated in matched loads. As a result, the
reflection coefficient of each port is zero—no signal will come out from a port if a
signal is incident on that port (but only that port!).

Matched Device

When all the ports ‘m’ are 
matched 

• In other words: 0m mm mV S V   For all m

• It is apparent that a matched device will exhibit a
scattering matrix where all diagonal elements are zero. S=

0 0.1 𝑗0.2
0.1 0 0.3
𝑗0.2 0.3 0

Lossless Device

• For a lossless device, all of the power that is delivered to each device port must
eventually find its way out!

• In other words, power is not absorbed by the network—no power to be
converted to heat!
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• The power incident on some port m is related to the amplitude

of the incident wave (Vm
+) as:

• The power of the wave exiting the port is:
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Matched, Lossless, Reciprocal Devices (contd.)

• power absorbed by that port is the difference of the
incident power and reflected power:
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  

• For an N-port device, the total incident power is: 
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mV   + +V V
(V+)H is the conjugate 

transpose of the row vector V+
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Similarly, the total 
reflected power  
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• Recall that the incident and
reflected wave amplitudes are
related by the scattering matrix of
the device as:

- +V = SV

• Therefore:

   
00 22

H H
H

P
ZZ

   

 
V S SVV V

• Therefore the total 
power delivered to 
the N-port device is:
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• For a lossless device: ∆P=0
 

 
0

0
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 
V

S S VI For all V+
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Matched, Lossless, Reciprocal Devices (contd.)
• Therefore: 0H I S S

If a network is lossless, then its scattering matrix S is unitary

H S S I

a special kind of matrix known as a unitary matrix

• How to recognize a unitary matrix?
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 
 
 
 

S
Example:

each column of the scattering matrix will 
have a magnitude equal to one

2

1

1
N

mn

m

S


 For all n

inner product (i.e., dot product) of 
dissimilar columns must be zero

* * * *

1 1

1

2 2 .... 0i

N

j imi mj

m

j Ni NjS S S S S SS S


     For all i≠jdissimilar columns are 
orthogonal

The columns of a unitary matrix 
form an orthonormal set!

• eg, for a lossless 3-port device: say signal is incident on port 1, and all
other ports are terminated. The power incident on port 1 is therefore:
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• the power exiting the device at each port is:
2 2
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1 1
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Matched, Lossless, Reciprocal Devices (contd.)
• The total power exiting 

the device is therefore:
2 2 2

1 2 3 11 1 21 1 31 1P P P P S P S P S P           

 2 2 2

11 21 31 1P S S S P    

• As the device is lossless, then the incident power (only on port
1) is equal to exiting power (i.e, P− =P1

+). This is true only if:
2 2 2

11 21 31 1S S S  

• Of course, this will be true if the incident wave is placed on
any of the other ports of this lossless device:

2 2 2

12 22 32 1S S S  

2 2 2

13 23 33 1S S S  

• We can state in general then that:
2

1

1
N

mn

m

S


 For all n

• In other words, the columns of the scattering matrix must have unit magnitude (a
requirement of all unitary matrices). It is apparent that this must be true for
energy to be conserved.

• An example of a (unitary) scattering
matrix for a 4-port lossless device is:

0

3 / 2

1/ 2

0

1/ 2

3 / 2

0

1/ 2

0

0

3 / 2 0

3 / 2

0

0

1/ 2j
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j 
 
 

  
 
 
 
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Matched, Lossless, Reciprocal Devices (contd.)

Reciprocal Device
• Recall reciprocity results when we build a passive (i.e., unpowered) device with

simple materials.
• For reciprocal network, the elements of the s-matrix are related as:

mn nmS S

• For example, a reciprocal device will have S21 = S12 or S32 =S23. We can write
reciprocity in matrix form as:

TS = S where T indicates transpose.

• An example of a scattering matrix
describing a reciprocal, but lossy
and non-matched device is:

0.40
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 

S

Example – 1 
• A lossless, reciprocal 3-port device has S-parameters of 𝑆11 =  1 2, 𝑆31 =  1 √2

,

and 𝑆33 = 0. It is likewise known that all scattering parameters are real.

→ Find the remaining 6 scattering parameters.
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Q: This problem is clearly impossible—you have 
not provided us with sufficient information!

A: Yes I have! Note I said the device was lossless and reciprocal!

Example – 1 (contd.)

• Start with what we currently know: S=

 1 2 𝑆12 𝑆13
𝑆21 𝑆22 𝑆23
 1 √2

𝑆32 0

• As the device is reciprocal, we then 
also know: 𝑺𝟏𝟐 = 𝑺𝟐𝟏

𝑺𝟏𝟑 = 𝑺𝟑𝟏 =  𝟏 √𝟐

𝑺𝟑𝟐 = 𝑺𝟐𝟑

• And therefore: S=

 1 2 𝑆21  1 √2

𝑆21 𝑆22 𝑆32
 1 √2

𝑆32 0

• Now, since the device is lossless, we know that:
2 2 2

11 21 31 1S S S  

2 2 2

12 22 32 1S S S  

2 2 2

13 23 33 1S S S  

22 2

21(1/ 2) (1/ 2) 1S  
2 2 2

21 22 32 1S S S  

22 2

32(1/ 2) (1/ 2) 1S  

Columns have
unit magnitude
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Example – 1 (contd.)
* * * * * *

11 12 21 22 31 32 12 21 22 32

1 1
0

2 2
S S S S S S S S S S     

* * * *

11 13 21 23 31 33 21 32

1 1 1
0 (0)

2 2 2
S S S S S S S S     

* * * *

12 13 22 23 32 33 21 22 32 32

1
0 (0)

2
S S S S S S S S S S

 
      

 

Dissimilar columns are 
orthogonal

We can simplify these expressions and can further simplify them by using the fact 
that the elements are all real, and therefore 𝑆21 = 𝑆21

∗ (etc.).

Q: I count the simplified expressions and find 6 equations yet only 
a paltry 3 unknowns. Your typical buffoonery appears to have led 
to an over-constrained condition for which there is no solution!

A: Actually, we have six real equations and six real unknowns, since scattering
element has a magnitude and phase. In this case we know the values are real, and
thus the phase is either 0° or 180°(i.e., 𝑒𝑗0 = 1 or 𝑒𝑗𝜋 = −1); however, we do not
know which one!
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Example – 1 (contd.)

• the scattering matrix for the given lossless,
reciprocal device is: S=

 1 2  1 2  1 √2

 1 2  1 2 −  1 √2

 1 √2
−  1 √2

0
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A Matched, Lossless, Reciprocal 3-Port Network
• Consider a 3-port device.

Such a device would have a
scattering matrix :

11 12 13

21 22 23

31 32 33

S S S

S S S

S S S

 
 


 
  

S

• Assuming the device is passive and made of simple (isotropic)
materials, the device will be reciprocal, so that:

S21 = S12

S31 = S13

S23 = S32

• Similarly, if it is matched, we know that: S11 = S22 = S33 = 0

• As a result, a matched, reciprocal device would
have a scattering matrix of the form:

21 31

21 32

31 32

0

0

0

S S

S S

S S

 
 


 
  

S

• if we wish for this network to be lossless, the
scattering matrix must be unitary, and therefore:

2 2

21 31 1S S 

2 2

12 32 1S S 

2 2

13 23 1S S 

*

31 32 0S S 

*

21 32 0S S 

*

31 31 0S S 

• Since each complex value S is represented by two real numbers (i.e., real and
imaginary parts), the unitary equations result in 9 real equations. The problem is,
the 3 complex values S21, S31 and S32 are represented by only 6 real unknowns.
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A Matched, Lossless, Reciprocal 3-Port Network (contd.)

We have over constrained our problem ! There are no 
unique solutions to these equations !

As unlikely as it might seem, this means that a matched, lossless, 
reciprocal 3-port device of any kind is a physical impossibility!

You can make a lossless reciprocal 3-port device, or a matched reciprocal 
3-port device, or even a matched, lossless (but non-reciprocal) 3-port 

network.

But try as you might, you cannot make a lossless, matched, and 
reciprocal three port component!

Guess what! I have determined that—unlike a 3-port device—a 
matched, lossless, reciprocal 4-port device is physically possible! In 

fact, I’ve found two general solutions!
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Matched, Lossless, Reciprocal 4-Port Network 

• The first solution is referred to as the symmetric solution:

0

0

0

0

00

0

0

j

j

j

j 













 
 
 
 
 
 

S

• Note for the symmetric solution, every row and every column of the scattering
matrix has the same four values (i.e., α, jβ, and two zeros)!

• The second solution is referred to as the anti-symmetric solution.

0

0

0

00

0

0

0



















 
 
 

 
 




S

Note that for anti-symmetric solution, two rows and two
columns have the same four values (i.e., α, β, and two 

zeros), while the other two row and columns have (slightly) 
different values (α, -β, and two zeros)

• It is quite evident that each of these solutions are
matched and reciprocal. However, to ensure that the
solutions are indeed lossless, we must place an
additional constraint on the values of α, β. Recall that a
necessary condition for a lossless device is:

2

1

1
N

mn

m

S


 For all n

• For symmetric case:
2 2

1  

• Similarly for the anti-symmetric case:
2 2

1  



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Matched, Lossless, Reciprocal 4-Port Network (contd.) 

• It is evident that if the scattering matrix is unitary (i.e., lossless), the
values α and β cannot be independent, but must be related as:

2 2
1  

• Generally speaking, we can find that α ≥ β. Given
the constraint on these two values, we can thus
conclude that:

1
0

2
 

1
1

2
 

1 1( )V z

1 1( )V z

0Z0Z

0Z

0Z Z

0Z 

2 2( )V z

2 2( )V z

3 3( )V z

3 3( )V z

P
o

rt
-1

P
o

rt
-3

Port-2

2 0Pz 

3 0Pz 1 0Pz 

3-port 
Linear 

Microwave 
Device

Example – 2 
• Say we have a 3-port network that is completely

characterized at some frequency ω by the
scattering matrix:

0.0 0.2 0.5

0.5 0 0.2

0.5 0.5 0

 
 


 
  

S

• A matched load is attached to port
2, while a short circuit has been
placed at port 3:

a) Find the reflection
coefficient at port 1, i.e.:

1 1
1

1 1

( )

( )

P

P

V z

V z




 

b) Find the transmission
coefficient from port 1
to port 2, i.e.,

2 2
21

1 1

( )

( )

P

P

V z
T

V z





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Example – 2 (contd.)
Solution:

I am amused by the trivial problems that you apparently find
so difficult. I know that:

1
1 11

1

0.0
V

S
V




    and 2

21 21

1

0.5
V

T S
V




  

NO!!! The above solution is not correct!

Remember, V1
−/V1

+ = S11 only if ports 2 and 3 are terminated in matched
loads! In this problem port 3 is terminated with a short circuit.

Therefore: 1
1 11

1

V
S

V




   and similarly: 2

21 21

1

V
T S

V




 

• To determine the values T21 and Γ1, we must start with the three equations provided by
the scattering matrix:

1 2 30.2 0.5V V V    2 1 30.5 0.2V V V    3 1 20.5 0.5V V V   

• and the two equations provided by the attached loads: 2 0V   3 3V V  

• Solve those five expressions to find:
1

1

1

0.25
V

V




    2

21

1

0.4
V

T
V




 
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Example – 3

• Consider a two-port device with Z0 =50Ω and
scattering matrix (at some specific frequency ω0):  0

0.1 0.7

0.7 0.2

j
S

j
 

 
   

 

• Say that the transmission line connected to port 2 of this device is terminated in
a matched load, and that the wave incident on port 1 is:

1

1 1( ) 2 j zV z j e    where z1P = z2P = 0.
Determine:

1. the port voltages V1(z1 = z1P) and V2(z2 =z2P) 

2. the port currents I1(z1 = z1P) and I2(z2 =z2P) 

3. the net power flowing into port 1

Solution: 1. Given the incident wave on port 1 is: 1

1 1( ) 2 j zV z j e   

• we can conclude (since z1P = 0):  1
0

1 1 1( ) 2 2 2P
jj z

PV z z j e j e j
        

• since port 2 is matched (and
only because its matched!): 1 1 1 11 1 1 1( ) ( ) 0.1( 2) 0.2P PV z z S V z z j j       

• The voltage at port 1 is thus:
( /2)

1 1 1 1 1 1 1 1 1( ) ( ) ( ) 2 ( 0.2) 2.2 2.2 j

P P PV z z V z z V z z j j j e              
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Example – 3 (contd.)
• Similarly, since port 2 is matched:

2 2 2( ) 0PV z z  

• Therefore:
2 2 2 21 1 1 1( ) ( ) 0.7( 2) 1.4P PV z z S V z z j j      

• The voltage at port 2 is thus:

0

2 2 2 2 2 2 2 2 2( ) ( ) ( ) 0 1.4 1.4 1.4 j

P P PV z z V z z V z z e          

2. The port currents can be determined from the results of the previous section

1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

0 0

( ) ( )
( ) ( ) ( ) P P

P P P

V z z V z z
I z z I z z I z z

Z Z

 
   

      

/2

1 1 1

2.0 0.2 1.8
( ) 0.036 0.036

50 50 50

j

PI z z j j j j e          

2 2 2 2 2 2
2 2 2 2 2 2 2 2 2

0 0

( ) ( )
( ) ( ) ( ) P P

P P P

V z z V z z
I z z I z z I z z

Z Z

 
   

      

2 2 2

0 1.4 1.4
( ) 0.028 0.028

50 50 50

j

PI z z e         
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Example – 3 (contd.)
3. The net power flowing into port 1 is:

1 1 1P P P   

2 2

1 1

1

0 02 2

V V
P

Z Z

 

  
   

 

2 2

1

2 0.2
0.0396

2 50
P


    Watts

Example – 4 

2
𝑍
0

𝑧1 𝑧2
𝑧1𝑝 = 0 𝑧2𝑝 = 0

• determine the scattering matrix of this two-port device:
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Q: OK, but how can we determine the scattering matrix of a device?
A: We must carefully apply our transmission line theory!

Q: Determination of the Scattering Matrix of a multi-port device would seem
to be particularly laborious. Is there any way to simplify the process?
A: Many (if not most) of the useful devices made by us humans exhibit a high
degree of symmetry. This can greatly simplify circuit analysis—if we know
how to exploit it!

Q: Is there any other way to use circuit symmetry to our advantage?
A: Absolutely! One of the most powerful tools in circuit analysis is Odd-Even
Mode analysis.
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Circuit Symmetry 
• For example consider

these symmetric multi-
port circuits:

1 → 2

2 → 1

3 → 4

4 → 3

100Ω

50Ω

200Ω 200Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4

• Or this circuit: which is
congruent under these
permutations:

1 → 3, 2 → 4, 3 → 1, 4 → 2

1 → 2, 2 → 1, 3 → 4, 4 → 3

1 → 4, 2 → 3, 3 → 2, 4 → 1

50Ω

50Ω

200Ω 200Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4
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Circuit Symmetry (contd.)
• Or this circuit with: which is congruent under these permutations:

1 → 3, 2 → 4, 3 → 1, 4 → 2

1 → 2, 2 → 1, 3 → 4, 4 → 3

1 → 4, 2 → 3, 3 → 2, 4 → 1

1 → 4, 2 → 2, 3 → 3, 4 → 1

1 → 1, 2 → 3, 3 → 2, 4 → 4

The importance of this can be seen when considering the scattering matrix, 
impedance matrix, or admittance matrix of these networks.

50Ω

50Ω

50Ω 50Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4
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Circuit Symmetry (contd.)
• For example, consider again this 

symmetric circuit:

• This four-port network has a single
plane of reflection symmetry, and
thus is congruent under the
permutation:

1 → 2, 2 → 1, 3 → 4, 4 → 3

• So, since (for example) 1→2, we find
that for this circuit:

𝑺𝟏𝟏 = 𝑺𝟐𝟐 𝒁𝟏𝟏 = 𝒁𝟐𝟐 𝒀𝟏𝟏 = 𝒀𝟐𝟐

must be true!

• Or, since 1→2 and 3→4 we find:

𝑺𝟏𝟑 = 𝑺𝟐𝟒 𝒁𝟏𝟑 = 𝒁𝟐𝟒 𝒀𝟏𝟑 = 𝒀𝟐𝟒

𝑺𝟑𝟏 = 𝑺𝟒𝟐 𝒁𝟑𝟏 = 𝒁𝟒𝟐 𝒀𝟑𝟏 = 𝒀𝟒𝟐

100Ω

50Ω

200Ω 200Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4

• Continuing for all elements of
the permutation, for this
symmetric circuit, the s-matrix
must have this form:

11 21 13 14

21 11 14 13

31 41 33 43

41 31 43 33

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

impedance and admittance matrices 
would likewise have this same form.
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Circuit Symmetry (contd.)
• Note there are just 8 independent elements in this

matrix. If we also consider reciprocity (a constraint
independent of symmetry) we find that 𝑆31 = 𝑆13 and
𝑆41 = 𝑆14, and the matrix reduces further to one with
just 6 independent elements:

11 21 31 41

21 11 41 31

31 41 33 43

41 31 43 33

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

11 21 31 41

21 22 41 31

31 41 11 21

41 31 21 22

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

• Or, for circuits with this
symmetry:

1 → 3, 2 → 4, 3 → 1, 4 → 2

50Ω

50Ω

100Ω 200Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4

Q: Interesting. But why do we care?
A: This will greatly simplify the analysis of this symmetric circuit, 
as we need to determine only six matrix elements!



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Circuit Symmetry (contd.)

• For a circuit with symmetry:

• the impedance (or scattering, or
admittance) matrix has the form:

11 21 31 41

21 11 41 31

31 41 11 21

41 31 21 11

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

Note: there are just four 
independent values!

50Ω

50Ω

200Ω 200Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4

Note: there are just three 
independent values!

• For a circuit with such symmetry: • the admittance (or scattering, or
impedance) matrix has the form:

11 21 21 41

21 11 41 21

21 41 11 21

41 21 21 11

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 50Ω

50Ω

50Ω 50Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4
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Circuit Symmetry (contd.)
• One more interesting thing (yet

another one!); recall that we
earlier found that a matched,
lossless, reciprocal 4-port device
must have a scattering matrix
with one of two forms:

0 0

0 0

0 0

0 0

j

j
S

j

j

 

 

 

 

 
 
 
 
 
 

0 0

0 0

0 0

0 0

j

S

 

 

 

 

 
 


 
 
 

 

Symmetric Anti-symmetric

• The “symmetric solution” has the same form as the
scattering matrix of a circuit with symmetry, reciprocity,
and matched ports!

21 31

21 31

31 21

31 21

0 0

0 0

0 0

0 0

S S

S S
S

S S

S S

 
 
 
 
 
 

Q: Does this mean that a matched, lossless, reciprocal four-port device with the
“symmetric” scattering matrix must exhibit certain type of symmetry?
A: That’s exactly what it means!

• Not only can we determine from the form of the scattering matrix whether a
particular design is possible (e.g., a matched, lossless, reciprocal 3-port device is
impossible), we can also determine the general structure of a possible solutions.
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Circuit Symmetry (contd.)
• Likewise, the “anti-symmetric” matched, lossless,

reciprocal four-port network must exhibit symmetry!

21 31

21 31

31 21

31 21

0 0

0 0

0 0

0 0

S S

S S
S

S S

S S

 
 


 
 
 

 

We’ll see just what these 
symmetric, matched, lossless, 

reciprocal four-port circuits actually 
are later in the course!

Example – 5 
• determine the scattering matrix of the simple two-port device shown below:

Port-1 Port-2

𝒁𝟎, 𝜷 𝒁𝟎, 𝜷

𝑧 = 0𝑧 = −𝑙

𝑆 = 0 𝑒−𝑗𝛽𝑙

𝑒−𝑗𝛽𝑙 0
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Symmetric Circuit Analysis 
200Ω

100Ω 100Ω

50Ω

𝐼1 𝐼2

+

−
𝑉1

+

−
𝑉2

• Consider this symmetric two-port 
device:

A: Resistors are easily split into two equal
pieces: the 200Ω resistor into two 100Ω
resistors in series, and the 50Ω resistor as
two 100 Ω resistors in parallel.

+

−
𝑉1

+

−
𝑉2

𝐼1 𝐼2

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

• Recall that the symmetry of this
2-port device leads to simplified
network matrices:

𝑆 =
𝑆11 𝑆21
𝑆21 𝑆11

Q: Yikes! The plane of reflection symmetry
slices through two resistors. What can we
do about that?
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Symmetric Circuit Analysis (contd.) 

Q: can circuit symmetry likewise simplify the procedure of determining these
elements? In other words, can symmetry be used to simplify circuit analysis?
A: You bet!

• First, consider the case where we
attach sources to circuit in a way
that preserves the circuit
symmetry:

+

−
𝑉1

+

−
𝑉2

𝐼1 𝐼2

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

But remember! In order for symmetry to be preserved, the 
source values on both sides (i.e, Vs) must be identical!
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Symmetric Circuit Analysis (contd.) 

𝐼2𝐼1

+

−
𝑉2

+

−
𝑉1

𝐼1𝑎 𝐼2𝑎

𝐼1𝑑 𝐼2𝑑𝐼1𝑏 𝐼2𝑏

𝐼1𝑐 𝐼2𝑐

+

−

𝑉1𝑐

+

−

𝑉2𝑐

+ −𝑉1𝑎 +− 𝑉2𝑎

+ −𝑉1𝑏 +− 𝑉2𝑏

• Since this circuit possesses bilateral (reflection) symmetry (1→2, 2→1), symmetric
currents and voltages must be equal:

𝑉1 = 𝑉2 𝑉1𝑎 = 𝑉2𝑎 𝑉1𝑏= 𝑉2𝑏 𝑉1𝑐 = 𝑉2𝑐
𝐼1 = 𝐼2 𝐼1𝑎 = 𝐼2𝑎 𝐼1𝑏 = 𝐼2𝑏 𝐼1𝑐 = 𝐼2𝑐 𝐼1𝑑= 𝐼2𝑑

• Consider the voltages and currents within this circuit under this symmetric
configuration:

Q: Wait! This can’t possibly be correct! Look at currents 𝐼1𝑎 and 𝐼2𝑎, as
well as currents 𝐼1𝑑 and 𝐼2𝑑. From KCL, this must be true:

𝐼1𝑎 = −𝐼2𝑎
𝐼1𝑑= −𝐼2𝑑
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Symmetric Circuit Analysis (contd.) 
• Yet you say that this must be true: 𝐼1𝑎 = 𝐼2𝑎 𝐼1𝑑= 𝐼2𝑑

A: Actually there is! There is one solution that will satisfy both sets of equations:

𝐼1𝑎 = 𝐼2𝑎 = 0 𝐼1𝑑= 𝐼2𝑑 = 0
The currents are zero!

If you think about it, this makes perfect sense! The result says that no 
current will flow from one side of the symmetric circuit into the other.

• If current did flow across the symmetry plane, then the circuit symmetry would
be destroyed—one side would effectively become the “source side”, and the
other the “load side” (i.e., the source side delivers current to the load side).

There is an obvious contradiction here! There is no way that both sets of equations 
can simultaneously be correct, is there?

• Thus, no current will flow across the reflection symmetry plane of a symmetric
circuit—the symmetry plane thus acts as a open circuit!
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𝐼2𝐼1

𝐼1𝑏 𝐼2𝑏

𝐼1𝑐 𝐼2𝑐

+ −𝑉1𝑎 +− 𝑉2𝑎

+ −𝑉1𝑏 +− 𝑉2𝑏
+

−

𝑉1𝑐

+

−

𝑉2𝑐
+

−
𝑉2

+

−
𝑉1

𝑽𝒊𝒕𝒖𝒂𝒍 𝑶𝒑𝒆𝒏, 𝐈 = 𝟎

Symmetric Circuit Analysis (contd.) 

The plane of symmetry 
thus becomes a virtual 

open!

A: So what! This means
that our circuit can be
split apart into two
separate but identical
circuits. Solve one half-
circuit, and you have
solved the other!

Q: So what?

𝑉1 = 𝑉2 = 𝑉𝑠

𝐼1𝑑 = 𝐼2𝑑 = 0

𝑉1𝑎 = 𝑉2𝑎 = 0

𝑉1𝑏= 𝑉2𝑏 =  𝑉𝑠 2

𝑉1𝑐 = 𝑉2𝑐 =  𝑉𝑠 2

𝐼1 = 𝐼2 =  𝑉𝑠 200

𝐼1𝑎 = 𝐼2𝑎 = 0

𝐼1𝑏 = 𝐼2𝑏 =  𝑉𝑠 200

𝐼1𝑐 = 𝐼2𝑐 =  𝑉𝑠 200
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Asymmetric Circuit Analysis

• Now, consider another type of symmetry, where the sources are equal but
opposite (i.e., 180 degrees out of phase).

+

−
𝑉1

+

−
𝑉2

𝐼1 𝐼2

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

This situation still preserves the symmetry of the circuit— somewhat. The 
voltages and currents in the circuit will now posses odd symmetry—they 
will be equal but opposite (180 degrees out of phase) at symmetric points 

across the symmetry plane.
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𝐼2𝐼1

+

−
𝑉2

+

−
𝑉1

𝐼1𝑎 𝐼2𝑎

𝐼1𝑑 𝐼2𝑑𝐼1𝑏 𝐼2𝑏

𝐼1𝑐 𝐼2𝑐

+

−

𝑉1𝑐

+

−

𝑉2𝑐

+ −𝑉1𝑎 +− 𝑉2𝑎

+ −𝑉1𝑏 +− 𝑉2𝑏

Asymmetric Circuit Analysis (contd.)

𝑉1 = −𝑉2 𝑉1𝑎 = −𝑉2𝑎 𝑉1𝑏= −𝑉2𝑏 𝑉1𝑐 = −𝑉2𝑐

𝐼1 = −𝐼2 𝐼1𝑎 = −𝐼2𝑎 𝐼1𝑏 = −𝐼2𝑏 𝐼1𝑐 = −𝐼2𝑐 𝐼1𝑑= −𝐼2𝑑
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Asymmetric Circuit Analysis (contd.)

𝐼2𝐼1

−

+
𝑉2

+

−
𝑉1

𝐼1𝑎 𝐼2𝑎

𝐼1𝑑 𝐼2𝑑𝐼1𝑏 𝐼2𝑏

𝐼1𝑐 𝐼2𝑐

+

−

𝑉1𝑐

−

+

𝑉2𝑐

+ −𝑉1𝑎 −+ 𝑉2𝑎

+ −𝑉1𝑏 −+ 𝑉2𝑏

𝑉1 = 𝑉2 𝑉1𝑎 = 𝑉2𝑎 𝑉1𝑏= 𝑉2𝑏 𝑉1𝑐 = 𝑉2𝑐

𝐼1 = 𝐼2 𝐼1𝑎 = 𝐼2𝑎 𝐼1𝑏 = 𝐼2𝑏 𝐼1𝑐 = 𝐼2𝑐 𝐼1𝑑= 𝐼2𝑑

Q: But wait! Again I see a problem. By KVL it is evident that: 𝑉1𝑐 = −𝑉2𝑐

Yet you say that 𝑉1𝑐 = 𝑉2𝑐 must be true!

• Perhaps it would be
easier to redefine
the circuit variables
as:
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Asymmetric Circuit Analysis (contd.)
A: Again, the solution to both equations is zero! 𝑉1𝑐 = 𝑉2𝑐 = 0

For the case of odd symmetry, the symmetric plane must be a plane of 
constant potential (i.e., constant voltage)—just like a short circuit!

𝐼2𝐼1

−

+
𝑉2

+

−
𝑉1

𝐼1𝑎 𝐼2𝑎

𝐼1𝑑 𝐼2𝑑𝐼1𝑏 𝐼2𝑏

𝐼1𝑐 𝐼2𝑐

+

−

𝑉1𝑐

−

+

𝑉2𝑐

+ −𝑉1𝑎 −+ 𝑉2𝑎

+ −𝑉1𝑏 −+ 𝑉2𝑏

𝑽𝒊𝒕𝒖𝒂𝒍 𝑺𝒉𝒐𝒓𝒕, 𝐕 = 𝟎

• Thus, for odd
symmetry, the
symmetric plane
forms a virtual
short.
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Asymmetric Circuit Analysis (contd.)

𝑉1 = 𝑉𝑠

𝐼1𝑑 =  𝑉𝑠 100

𝑉1𝑎 = 𝑉𝑠

𝑉1𝑏 = 𝑉𝑠

𝑉1𝑐 = 0

𝐼1 =  𝑉𝑠
50

𝐼1𝑎 =  𝑉𝑠 100

𝐼1𝑏 =  𝑉𝑠 100

𝐼1𝑐 = 0

+

−
𝑉1

𝐼1

𝐼1𝑏 + −𝑉1𝑏

+ −𝑉1𝑎

𝐼1𝑎

𝐼1𝑑

+

−

𝑉1𝑐

𝐼1𝑐


