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Kirchoff’s Voltage Law

* Consider a simple electrical circuit:

The electric field in this circuit will
“look” something like this:

We find that if the voltage source is
on (i.e., V # 0), there will be electric
potential differences (i.e., voltage)
between different points of the
circuit. This can only be true if
electric fields are present!
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Kirchoff’s Voltage Law (contd.)

 So, instead of using circuit theory, let’'s use our new electrostatics
knowledge to analyze this circuit.

* First, consider a contour C, that follows the circuit path.

+V, -  Using this path, let’s evaluate the
b/\'{R\‘/\C contour integral:
1 -
gL+ i E(r).dl

- contour C, into six sections: section 1
extends from point a to point b, section
2 extends from point b to point ¢, etc.
Thus, the integral becomes:

>
R, IF V2« This is most easily done by breaking the
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Kirchoff’s Voltage Law (contd.)
* Let’s evaluate each term individually:

Section 1 (a to b)

In this section, the contour follows the wire from the
voltage source to the first resistor. We know that the
electric field in a perfect conductor is zero, and
likewise in a good conductor it is very small.
Assuming the wire is in fact made of a good
conductor (e.g. copper), we can approximate the
electric field within the wire (and thus at every point

along section 1) as zero (i.e., E(f) = 0). Therefore,
this first integral equals zero!

UE(r)a :%

[This of course makes sense! We know that the electric potentiaj

difference across a wire is zero volts.
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Kirchoff’s Voltage Law (contd.)
Section 2 (b to c)
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In this section, the contour moves through the first
resistor. The contour integral along this section therefore

allows us to determine the electric potential difference
<> across this resistor. Let’s denote this potential difference
as Vy:

[ jE(r)a =V, -V, :VlJ

Section 3 (c to d)

Just like section 1, the contour follows a wire, and thus
the electric field long this section of the contour is zero,
() as is the potential difference between point ¢ and point d.

[}E(r)a :OJ
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Kirchoff’s Voltage Law (contd.)
Section 4 (d to e)

Just like section 2, the contour moves through a resistor.
The contour integral for this section is thus equal to the
() potential difference across this second resistor, which we

denote as V,:
[jE(r).a:vd -V, =v2]
d

Section 5 (e to f)

Again, the contour follows a conducting wire—and again,
the electric field along the contour and the potential
difference across it are both zero:
f_. R
[jE(r).dl =0 J
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Kirchoff’s Voltage Law (contd.)

Section 6 (f to a)
This final section of contour C, extends through the

voltage source, thus the contour integral of this section
provides the electric potential difference between the
O two terminals of the this voltage source (i.e., V; = V,). By

definition, the potential difference between points a and
f is a value of V volts (i.e., V,-V; = V). Therefore, we find
that the contour integral of section 6 is:

[ TE(F)E =V, -V, =—(V, -V, )=-V ]

* Whew! Now let’s combine these results to determine the contour integral
for the entire contour C,.

[gSE(r)E:0+vl+0+v2+o—vJ — [chE(r)E=V1+v2 —v]
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Kirchoff’s Voltage Law (contd.)

N
Q: Wait; I've forgotten, Why

are we evaluating these
contour integrals?

J

A: Remember, since the electric field is
static, we also know that integral around
any closed contour is zero. Thus, we can
conclude that:

[o =$E(M)dI =V, +V, —VJ

* In other words, we find by performing an electromagnetic analysis of
the circuit, the voltages across each circuit element are related as:

{v1+v2 v =o]
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Kirchoff’s Voltage Law (contd.)

/Q: You have wasted my time! Using
only Kirchoff’s Voltage Law (KVL), |
arrived at precisely the same result
(V,+V,—=V =0). | think the
above equation is true because of
KVL, not because of your fancy

\electromagnetic theory! /

A: It is true that the result we obtained by integrating the electric field
around the circuit contour is likewise apparent from KVL. However, this

result is still attributable to electrostatic physics, because KVL is a direct
result of electrostatics!
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The electrostatic equation: [ CJSE(F)E
G

Kirchoff’s Voltage Law (contd.)

')

when applied to the closed contour of any circuit, results in Kirchoff’s

Voltage Law, i.e.:

e

where I/, are the electric potential differences across each element of
a circuit “loop” (i.e., closed contour).

Gustav Robert Kirchhoff (1824-1887), German
physicist, announced the laws that allow calculation
of the currents, voltages, and resistances of
electrical networks in 1845, when he was only
twenty-one! His other work established the
technique of spectrum analysis that he applied to
determine the composition of the Sun.
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Joule’s Law

 Recall that the work done on charge Q by an electric [W :QIE(F)E]
field in moving the charge along some contour Cis:

Q: Say instead of one charge Q, we have a steady stream of charges (i.e.,
electric current) flowing along contour C?
A: We would need to determine the rate of work per unit time, i.e., the
power applied by the field to the current.

e Recall also that the time derivative of work is power!

20— ofe ]| mmm P~ [EOA-1fECE

dt

 But look! The contour integral we know is
equal to the potential difference V between
either end of the contour. Therefore:

Look familiar!?

The power delivered to charges by the field is equal to the current “1” flowing along
the contour, times the potential difference (i.e., voltage V ) across the contour.
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“Joule’s Law (contd.)

Consider now the power delivered in some volume Vv, say the volume of a
resistor. Recall the electric field has units of volts/m, and the current
density has units of amps/m?.

We find that the dot product of the electric field and the current density is
a scalar value with units of Watts/m3. We call this scalar value the power

density: o VY A Watt
Power Density =E(T).J (r){(al(ﬁjzt o ﬂ

Integrating power density over some volume Vv gives the total power
delivered by the field within that volume:

[P = [[TE®I@av = [[[om[EM| dv=]] %\3@)\2 dv [Watt]J
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James Prescott Joule (1818-1889), born into a well-
to-do family prominent in the brewery industry,
studied at Manchester under Dalton. At age twenty-
one he published the "I-squared-R" law which bears
his name. Two years later, he published the first
determination of the mechanical equivalent of heat.
He became a collaborator with Thomson and they
discovered that the temperature of an expanding gas
falls. The "Joule-Thomson effect" was the basis for
the large refrigeration plants constructed in the 19th
century (but not used by the British brewery
industry). Joule was a patient, methodical and
devoted scientist; it became known that he had
taken a thermometer with him on his honeymoon
and spent time attempting to measure water
temperature differences at the tops and bottoms of
waterfalls.




Information Technology Delhi

1D

Indraprastha Institute of
b ECE230

4 ) i i .. ) ™
Recall that if a dielectric material is immersed in an
electric field, each atom/molecule in the material will
form an electric dipole!

. J
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The Polarization Vector

* Recall that in dielectric materials (i.e., insulators), the charges are bound.
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As a result, atoms/molecules form electric dipoles when an electric
field is present!
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The Polarization Vector (contd.)

* Note that even for some small volume Av, there are many
atoms/molecules present; therefore there will be many electric dipoles.
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 We therefore define an average dipole moment, per unit volume, called
the Polarization Vector P(7).

B(F) = > p, [ dipole_moment _C }

Av | unit_volume m’
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The Polarization Vector (contd.)

= . ZBH dipole_moment C
AV unit_volume m

(—)

p,, is one of N dipole moments in volume Av, centered at position 7. Note)
the polarization vector is a vector field. As a result, the direction and
magnitude of the Polarization vector can change as function of position

\_ (i.e., a function of ).

_/
Q: How are vector fields ﬁ(f) and E('F) related??

A: Recall that the direction of each dipole moment is the same as the

polarizing electric field. Thus ﬁ(f) and E(f) have the same direction. Their
magnitudes are related by a unitless scalar value x,(7), called electric

susceptibility: [ 5 (F)=z,7.(7) £ (T)]

[Electric susceptibility is a material parameter indicating the]

“stretchability” of the dipoles.
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The Polarization Vector (contd.)

Q: Can we determine the fields created by a polarized material?
A: Recall the electric potential field created by one dipole is:

V()= p’.(r—r')

— 3
47&90‘r—r"

Therefore, the electric potential field created by a distribution of dipoles
(i.e., P(7)) across some volume V is:

V-1,

v 472'80‘I’—I"
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The Polarization Vector (contd.)

Q: But | thought scalar charge )
distributions p_,(7) and p.(7)created
the electric potential field V' (7). Now
you are saying that potential fields are

created by the vector field ﬁ(f) S,

(" . L. = A
A: As we will soon see, the polarization vector P(7) creates
equivalent charge distributions—we will get the correct

_ answer for V() from either source! )
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Polarization Charge Distributions

* Consider a chunk of dielectric material with volume V.

Say this dielectric material is immersed in an electric field E(f), therefore
creating atomic dipoles with density 13(7’).
Q: What electric potential field IV (7) is created by these diploes?

A: We know that: P
O- (1) ™ Using
v 4”‘90‘r -f ‘ Divergence
It can be shown that: Theorem
N

r R
V(r)zmp(r).(r— ) m A (I ; (ﬁ)P(r)a(r)dS

4%50‘F—r‘ 47[‘90 y ‘r r‘ ‘r r‘

g J

where S is the closed surface that surrounds volume v, and @, (7) is the
unit vector normal to surface S (pointing outward).
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Polarization Charge Distributions (contd.)
7 ﬁ(r_').(F— )

472-8 J'”' VP(I‘)d + 1 4':‘,B|:’(I’)a(l’)dS

r—rf 7y |r-r

-]

‘ This complicated result is only important when we compare it to the electric)
potential created by volume charge density p,(7) and surface charge

% densityp (7). y

* If both volume and surface charge are present, the total electric potential

field is:
p.(r) 1 e pg(r)
e e

\Y

 The comparison gives: %Vp (r) = —V.ﬁ(F)] [,Osp (r)= E(T)-é‘n]

The subscript p (e.g., Pupr psp) indicates that these functions represent
equivalent charge densities due to the dipoles created in the dielectric.
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Polarization Charge Distributions (contd.)
* In other words, the electric potential field V' (7) (and thus electric field E (7))

created by the dipoles in the dielectric (i.e., 13(1’)) is indistinguishable from
the electric potential field created by the equivalent charge densities p,,,(7)
and p,(7)!

* For example, consider a dielectric material immersed in an electric field,
such that its polarization vector ﬁ(f) is:  P(T)=34, C/m?

. - - - B .
R '.,‘ o* '.,‘ o* '.,‘ o* '.,‘ RALTN o* -..‘
- ‘ ° ° . R R
* “‘ o ‘ “‘ O ‘ “‘ Of ‘ “' O ‘ “' o ‘ "‘
. g . i Y i . & . & .
. o . il . K . o . o .
) - L] - L] - - ~ - ~ -
» - » - » - n - L .
" - " - L - - - L

>
o:0
o:0
o:0
o:0

E(7)

o: 0
o: 0
o: 0
o: 0
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* Note since the polarization vector is a constant, the equivalent volume
charge density is zero:

P (1) =-V.P(")=-V.34, =0

* On the top surface of the dielectric (a, = @,), the equivalent surface

charge is: _ o
P, (M) =P(r).a,=34,4, =3 C/m?
* On the bottom surface of the dielectric (@, = —a,), the equivalent surface
charge is:

p,,(T)=P(7).4, =-34,4, =-3 C/m?

 On the sides of the dielectric material, the surface charge is zero, since

@,.a,=0).
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I Polarization Charge Distributions (contd.)

* The result actually makes physical sense! Note at the top of dielectric, there is a
layer of positive charge, and at the bottom, there is a layer of negative charge.

"a
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* » * » * » * » * » * -
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* In the middle of the dielectric, there are positive charge layers on top of negative

charge layers. The two add together and cancel each other, so that equivalent
volume charge density is zero.
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Polarization Charge Distributions (contd.)

Finally, recall that there is no perfect dielectric, all materials will have some
non-zero conductivity o (7).

As a result, we find that the total charge density within some material is

the sum of the polarization charge density and the free charge (i.e.,
conducting charge) density:

[va (M) =p,(N)+ P, () ]

Where: P (T)= total volume charge density

p,(T)= free charge density

P ()= polarization charge density

This is likewise (as well as more frequently!) true for surface charge
density:

e M) =00+,
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Electric Flux Density
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* Yikes! Things have gotten complicated!
* Infree space, we found that charge p,(7) creates an electric field E(f).

Pretty simple! p,(T) |:> E(f)

* But, if dielectric material is present, we find that charge p,(7) creates an

initial electric field E;(f). This electric field in turn polarizes the material,
forming bound charge p (7). This bound charge, however, then creates its

own electric field Es(f) (sometimes called a secondary field), which
modifies the initial electric field!

Not so simple! p,(T) I:> E;(f) I:> Pup(T) |:> Es)(f)

The total electric field created by free charge when dielectric
material is present is thus E('F) = E;(f) + E;(f).
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Electric Flux Density (contd.)

Q: Isn’t there some easier way to account for the effect of dielectric

material??
A: Yes there is! We use the concept of dielectric permittivity, and a new

vector field called the electric flux density ﬁ(f).

* To see how this works, first consider the point form of Gauss’s Law:

&y

where p .(7) is the total charge density, consisting of both the free
charge density p,(7) and bound charge density p,,(7):

[pw (1) =p, (D) + P, (r)]

 Therefore, we can write Gauss’s Law as:

| WV ED)=p,1)+ 2, )
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Electric Flux Density (contd.)

e Recall the bound charge density is equal to: pvp(F) :—V.ﬁ(T)

Therefore, expression for Gauss’s Law becomes: gOV.E(T) =p,(T) —V.P(F)

[V-(eoﬁ(r)ﬁ(r)):pv(r)l./

Note this final result says that the divergence of vector field eoﬁ(f) +

13(1’) is equal to the free charge density p (7). Let’s define this vector
field the electric flux density l_j(f):

| B =&,EM+P(T) |

* Therefore, we can write a new form of Gauss’s Law: [B(r)igoﬁ(r)+5(r)]

(

\_

charge p,(7). In other words, the source of electric flux density is free charge

— )
This equation says that the electric flux density D (7) diverges from free

p,(7) --and free charge only! y
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Electric Flux Density (contd.)

The electric field E(f) is created by both free charge and bound charge
within the dielectric material.

However, the electric flux density ﬁ(f) is created by free charge only—the
bound charge within the dielectric material makes no difference with
regard to D (7)!

We can further simplify the expression. Recall that the
polarization vector is related to electric field by
susceptibility x,(7):

[ P(r) = 6,2 (NEM |

Therefore the electric flux —— N T—
density is: [P(r) _8OZe(r)E(r)]

We can further simplify this by defining the
permittivity of the medium (the dielectric material):

) =5, (14 2.(7)

€y

This enables us to define relative permittivity: [gr (F) = £(1) =1+ ;(e(r)]
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Electric Flux Density (contd.)

 We can thus write a simple
relationship between electric flux [5(T)=5(T)E(T):gogr(T)E(F)]
density and electric field:

Like conductivity o(7), permittivity €(7) is a fundamental material
parameter. Also like conductivity, it relates the electric field to another
vector field.

Thus, we have an alternative way to view electrostatics:

1. Free charge p, (") creates electric flux density D (7).
2. The electric field can be then determined by simply dividing l_j(f) by the
material permittivity £(7) (i.e., E(F) = D(F)/e(7).

p,(F) =) D(F) —y EF
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Electrostatic Field Equations in Dielectrics

 The electrostatic equations for fields in dielectric materials are:
VxE(r)=0 v.D(r) = p,(r) D(r) = &(r)E(r)
* Inintegral form, these equations are:
PE(r)di=0 {pD(r).ds =Q,, D(r) = &(r)E(r)
c S

* Likewise, for free charge located in some homogeneous (i.e., constant)
material with permittivity €, we get the following relations:

_ r = 1 () o
[V(r):471w WV_(E?FV] ﬂE(r)‘zél—MMF_Flrdv] [vzv(r): p_m]

v &
In other words, for homogenous materials, replace ¢, (the
permittivity of free-space) with the more general permittivity
value €.
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Example -1

* At the center of a hollow dielectric sphere (¢ = gy¢,.) is placed a point
charge Q. If the sphere has inner radius a and outer radius b, calculate D,
E and P.

£ = g)&,
ForO0<r<a
Gauss’s law gives: , D= Qzér

Arr

E-—9 4 5. . F

dney’ " ™y P=D-5E=0

Fora<r<b
= - -1 Q
: I A P= E=-

Gauss’s law gives: D= Qzar Aebo == 2%




1D

Indraprastha Institute of
b ECE230

Information Technology Delhi

Example — 1 (contd.)
Forr > b

-

. = ) = Q -
Gauss’s law gives: D:47(3r2a wy E= 7, mmp P=D-gE=0

Therefore: _
D= 4Q =8, r>0
Tl
e Q X -
a a<r<b e —1 i
—  |drmeert B Qzar a<r<b
E = 0 P=< ¢ A4nr
py— a,  otherwise 0 otherwise
| 7, \
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—_

Show that: P=(g-¢)E

Q

-

o
O
Il
-
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Continuity Equation

e The charge conservation principle says: the time rate of decrease of
charge within a given volume must be equal to the net outward current
flow through the surface of the volume.

* Therefore, current Iout coming out of the closed surface is:

_—dQ Q,, is the charge
'”] (s enclosed by the closed
surface

From
Divergence
Theorem

r If we agree to
_ _Ejpvdv eep the volume
v constant

_inn _ _J' aIOV dv
dt ot

v

~dQ
e We know that: [dt
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Continuity Equation (contd.)

5 Continuity Equation or
V.J = 'OVJ % 1 Continuity of Current
Equation

 Therefore:

Continuity equation is derived from the principle of
conservation of charge - It states that there can
be no accumulation of charge at any point

D =
For steady currents, é? =0, and therefore, v.J =0

Total charge leaving the volume is the same as
the charge entering the volume & precursor to
Kirchoff’s Current Law
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Electrostatic Boundary Conditions

* A vector field is said to be spatially continuous if it doesn’t exhibit abrupt
changes in either magnitude or direction as a function of position.

 Even though the electric field may be continuous in adjoining dissimilar
media, it may well be discontinuous at the boundary between them.

* Boundary conditions specify how the components of fields tangential and
normal to an interface between two media relate across the interface.

* To determine boundary conditions, we need to use Maxwell’s equations:

@E,m:o émmmmm) VXE=0

JOEQ, == vD-p

S

Needless to say, these boundary conditions are equally
valid for Electrodynamics
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 Consider the interface between two dissimilar dielectric regions:

€1 E1(f) 51(77)
€ E)z(f) Bz(f)

e Say that an electric field is present in both regions, thus producing also an
electric flux density D (7) = € E (¥).

Q: How are the fields in dielectric region 1 related to the fields in region 2 ?

A: They must satisfy the dielectric boundary conditions !
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Dielectric — Dielectric Boundary Conditions (contd.)
* First, let’s write the fields at the dielectric interface in terms of their
normal En(f) and tangential Et(f) vector components:

E 1,(7) E,(F) = E1,(F) + E,,()
a’n
14 E. (P
E 5, (7) E, (F)

E,(r)=E, () +E,(7)
€
* Our first boundary condition states that the tangential component of the
electric field is continuous across a boundary.

where 7, denotes any point on

* In other words: [ Eu(F;) = Ea(T;) ] C— boundary (e.g., dielectric
interface).

- The tangential component of the electric field at one side of the dielectric
boundary is equal to the tangential component at the other side !
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Dielectric — Dielectric Boundary Conditions (contd.)

e We can likewise consider the electric flux densities on the dielectric
interface in terms of their normal and tangential components:

Bln(f) 51(77) = 81E)1(77)
a,
f1. 4 D,,(7)
D 5, (F) D, (7)

Dy = Szﬁz(f)
€

The second dielectric boundary condition states that the normal vector

component of the electric flux density is continuous across the dielectric
boundary.

e In other (= . — _ where 7, denotes any point on the
words: [ Din(T;) = DZ”(rb)] — boundary (e.g., dielectric

interface).
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Dielectric — Dielectric Boundary Conditions (contd.)

* Since 5(f)=£§(f), these boundary conditions can likewise be

expressed as:
Du (T) _ Da ()
2 &,

£En(R)=£,En(f)

MAKE SURE YOU UNDERSTAND THIS:

" These boundary conditions describe the relationships of the vector A
fields at the dielectric interface only (i.e., at points r = r)!!!l They say
nothing about the value of the fields at points above or below the
\ interface. )
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Dielectric — Dielectric Boundary Conditions (contd.)
Proof

To derive the boundary conditions for tangential components of E and 5,
let us consider the closed rectangular loop abcda.

The line integral along this closed loop is ZERO.

If Ah — 0, the contributions to the line integral by the segments bc and da
vanish.
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“Dielectric — Dielectric Boundary Conditions (contd.)

Where, d;; and d;, are the

b d
* Therefore: [C.EE'dI :JEl'é'ldeEz'é'Zdl :O} unit vectors along segments
ab and cd.

* Next, we decompose El and Ez S

into components normal and Ei=Eq, +Ey Ey=Ey+Ey
tangential to the boundary:
* Wealso know that:  d;y = —a,

 Thus the contour integral can be simplified to:

(E-E)a,-0 wemmmp |EuzEa

Thus the tangential component of the electric field is continuous
across the boundary between any two media

 Upon decomposing 51 and 52 into components normal and
tangential to the boundary and noting that D,, = ¢,E,, and | Dx th]

D, = &UFE,,, the boundary condition on the tangential | & &
component of the electric flux density is:
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Dielectric — Dielectric Boundary Conditions (contd.)

Now, apply Gauss’s law to determine boundary conditions on the normal
components of E and D.

~ Qni1

The total outward flux through the three surfaces of the small cylinder
must equal the total charge enclosed in the cylinder.

By letting the cylinder’s height Ah — 0, the contribution to the total flux
through the side surface goes to ZERO.
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Dielectric — Dielectric Boundary Conditions (contd.)

 Even if each of the two media happens to contain free charge densities,
the only free charge remaining in the collapsed cylinder is that distributed
on the boundary (Q,,. = As X pg).

enc

(J}BE Qe =ASX P, — j D14 dS + J D24, ,dS = Asx p,
s

top bottom

* It is important to remember that the normal unit vector at the surface of

any medium is always defined to be in the outward direction away from
that medium.

* Since, 4,y = —0p,o [(61—62).én2 :ps]

o If Bm and BZn denotes the normal components of 51 and 52 along a,,»

[Bln - BZn = ,05]
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Dielectric — Dielectric Boundary Conditions (contd.)
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* If no free charge exist at the boundary (i.e., charges are not deliberately
placed at the boundary) then:

[Bm—ﬁm :o] —> [Bm =62n]

 Thus the normal component of D is continuous across the interface, that is
D, undergoes no change at the boundary.

* Furthermore: Eﬁ'lEln:EzEZn]

 The boundary conditions are usually applied in finding the electric field on
one side of the boundary given the field on the other side.

 Beside this, we can use the boundary conditions to determine the
“refraction” of the electric field across the interface.
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Conductor — Dielectric Boundary Conditions
* Consider the case where region 2 is a perfect conductor:

E1(f) — E1n(f)

I

E,(7) =0
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Q
3

0, = o (i.e., perfect conductor)

+ Recall E(7) = 0 in a perfect conductor. This of course (— - I
means that both the tangential and normal {EZt(r):O:EZH(r)]

ﬁ —
component of E,(7) are also equal to zero:

* And, since the tangential component of the electric (= — _
field is continuous across the boundary, we find that at [E“(rb) = Ez(T,) :O]

the interface:




Information Technology Delhi

1D

Conductor — Dielectric Boundary Conditions (contd.)

 Think about what this means! The tangential vector
component in the dielectric (at the dielectric/conductor E(Fb):ﬁln(Fb)]
boundary) is zero. Therefore, the electric field at the
boundary only has a normal component:

Indraprastha Institute of
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* Therefore, we The electric field on the surface of a conductor is
can say: orthogonal (i.e., normal) to the conductor.

Q1: What about the electric flux density 51(f) ?

Al: The relation 51(1’) = slﬁl(f) is still of course valid, so that the electric
flux density at the surface of the conductor must also be orthogonal to the
conductor. For boundary with surface charge density (p.), D.,(7) =
e.E.,(T) = p..

Q2: But, we learnt that the normal component of the electric flux density is

continuous across an interface. If 1_52”(17) = 0, why isn’t ﬁln(F) =07
A2: Great question! The answer comes from a more general form of the
boundary condition.
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Conductor — Dielectric Boundary Conditions (contd.)

e Consider again the interface of two dissimilar dielectrics. This time,
however, there is some surface charge distribution ps(7,) (i.e., free
charge!) at the dielectric interface:

 The boundary condition for this situation turns out to be:

(4,[B2(0)-Bu(®)]=p @] == [ D.0-D.M-2®) |
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Conductor — Dielectric Boundary Conditions (contd.)

Note that if ps(7,) =0, this boundary condition returns (both physically
and mathematically) to the case studied earlier—the normal component
of the electric flux density is continuous across the interface.

This more general boundary condition is wuseful for the
dielectric/conductor interface. Since 1_52(7’) = 0 in the conductor, we find

that:
[an.Bln(Fb)z pS(Fb)] —> [Dm(?b)=ps(?b)]

In other words, the normal component of the electric
flux density at the conductor surface is equal to the
charge density on the conductor surface.
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Conductor — Dielectric Boundary Conditions (contd.)

 Note in a perfect conductor, there is plenty of free charge available to

form this charge density! Therefore, we find in general that Bln(f) # 0 at
the surface of a conductor.

D,(7)
a, T
81 1‘
D,(7) = 0

o, = oo (i.e., perfect conductor)
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Conductor — Dielectric Boundary Conditions (contd.)
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Summary: Eu(F;)=0 [Bn(rb) =0 ]

&

[Bm(rb)=ps (rb)] [En(fb)@]

4 Again, these boundary conditions describe the

fields at the conductor/dielectric interface. They
say nothing about the value of the fields at
\ locations above this interface. )
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Conductor — Dielectric Boundary Conditions (contd.)

 Thus under static conditions, the following conclusions can be made about
a perfect conductor:

1. No electric field may exist within a conductor, i.e.,

[P0 E = o)
2. Since, E=-VV= 0, there can be no potential difference between any
two points in the conductor; that is, a conductor is an equipotential

body.
3. An electric field must be external to the conductor and must be normal
to its surface. i.e.,

{l—))t — E':081‘Et = O' Bn = E':Osrﬁn — ps]

[An important use of this concept is in the design of Electrostatic Shielding]
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Conductor — Free Space Boundary Conditions

* Itis aspecial case of conductor-dielectric boundary conditions.
* Replace by €, = 1 in the expressions to get:

[l_jt:SOE)t:O' BnZSOEnsz]

flt should be noted once again that the electric
field must approach a conducting surface
. normally.




