Problems on VECTORS

Qus.(1) Given vectors $\mathbf{A} = a_x + 3a_z$. and $\mathbf{B} = 5a_x + 2a_y - 6a_z$ determine

(a) $|\mathbf{A}+\mathbf{B}|$ (b) **5A-B** (c) The component of **A** along a_v (d) A unit vector parallel to **3A** + **B**

- Qus.(2) An airplane has a ground speed of 350 km/hr in the direction due west. If there is a wind blowing north west at 40 km/hr, calculate the true airplane speed and heading of the airplane.
- Qus.(3) If $A = 5 a_x + 3 a_y + 2 a_z$, $B = -a_x + 4 a_y + 6 a_z$, $C = 8a_x + 2 a_y$

determine α and β such that the α A+ β B+ C is parallel to the y-axis.

- Qus.(4) Given vectors $\mathbf{A} = \alpha \mathbf{a}_x + \mathbf{a}_y + 4 \mathbf{a}_z$, $\mathbf{B} = 3\mathbf{a}_x + \beta \mathbf{a}_y + 6 \mathbf{a}_z$, $\mathbf{C} = 5\mathbf{a}_x 2 \mathbf{a}_y + \gamma \mathbf{a}_z$ determine α , β and γ such that the vectors are mutually orthogonal.
- Qus.(5) Given vectors $\mathbf{T} = 2a_x-6a_y+3a_z$, $\mathbf{S} = a_x+2a_y+a_z$, find: (a) the scalar projection of \mathbf{T} on \mathbf{S} , (b) the vector projection of \mathbf{S} on \mathbf{T} , (c) the smaller angle between \mathbf{T} and \mathbf{S} .
- Qus.(6) Given vectors A= a_x+ 6a_y +5 a_z, B= a_x+ 2 a_y +3 a_z, find: (a) the scalar projection of A on B,
 (b) the vector projection of B on A, (c) the unit vector perpendicular to the plane containing A and B.
- Qus.(7) Show that the dot and cross in the triple scalar product may be interchanged, i.e.,

 $\mathbf{A} \bullet (\mathbf{B} \ge \mathbf{C}) = (\mathbf{A} \ge \mathbf{B}) \bullet \mathbf{C}$

- Qus.(8) If \mathbf{r} is the position vector of the point (x, y, z) and \mathbf{A} is a constant vector, show that:
 - (a) $(\mathbf{r}-\mathbf{A}) \cdot \mathbf{A} = 0$ is the equation of a constant plane.
 - (b) $(\mathbf{r} \cdot \mathbf{A}) \cdot \mathbf{r} = 0$ is the equation of a sphere.
- Qus.(9) (a) Prove that $\mathbf{P} = \cos\theta_1 a_x + \sin\theta_1 a_y$ and $\mathbf{Q} = \cos\theta_2 a_x + \sin\theta_2 a_y$ are unit vectors in the x y-plane respectively making angles $\theta_1 \& \theta_2$ with the x-axis.
 - (b) By means of dot product, obtain the formula for $\cos(\theta_2-\theta_1)$ By similarly formulating **P** and **Q**, obtain the formula for $\cos(\theta_2+\theta_1)$
 - (c) If θ is the angle between **P** and **Q**, find1/2(|**P**-**Q**|) in terms of θ .

Qus.(10) If **E** = $2x a_x + a_y + yz a_z$, **F** = $xya_x - y^2 a_y + xyz a_z$, find:

(a) $|\mathbf{E}|$ at (1,2,3) (b) The component of \mathbf{E} along \mathbf{F} at (1,2,3)

(c) A vector perpendicular to both **E** and **F** at (0,1,-3) whose magnitude is unity.

Problems on Co-ordinate Systems

Qus.(1) (a) Convert points P(1,3,5), T(0,-4,3), and S (-3,-4,-10) from Cartesian to cylindrical and spherical coordinates.

$$\mathbf{Q} = \frac{\sqrt{x^2 + y^2} \mathbf{a}_x}{\sqrt{x^2 + y^2 + z^2}} - \frac{yz \, \mathbf{a}_z}{\sqrt{x^2 + y^2 + z^2}}$$

(b) Transform vector vx + y

$$\frac{1}{2} - \frac{yz \mathbf{a}_z}{\sqrt{x^2 + y^2 + z^2}}$$
 to cylindrical and spherical coordinates.

(c) Evaluate \mathbf{Q} at T in the three coordinate systems.

- Qus.(2) Given point P (-2,6,3) and vector $\mathbf{A} = \mathbf{y} \mathbf{a}_x + (\mathbf{x} + \mathbf{z}) \mathbf{a}_y$ express P and A in cylindrical and spherical coordinates. Evaluate A at P in the Cartesian, cylindrical, and spherical systems.
- Qus.(3) Express vector $\mathbf{B} = \frac{10}{r} \mathbf{a}_r + r \cos \theta \, \mathbf{a}_\theta + \mathbf{a}_\phi$ in Cartesian and cylindrical coordinates. Find **B** (-3,4,0) and **B** (5, Π /2,-2).
- Qus.(4) Two uniform vector fields are given by $\mathbf{E} = -5a_{\rho} + 10a_{\phi} + 3a_z$ and $\mathbf{F} = a_{\rho} + 2a_{\phi} 6a_z$

(a) $|\mathbf{E} \mathbf{x} \mathbf{F}|$ (b) The vector component of \mathbf{E} at P (5, $\Pi/2,3$) parallel to the line x=2,z=3

(c) The angle **E** makes with the surface z=3 at P

Qus.(5) Match the items in the left list with those in the right list. Each answer can be used once, more than once, or not at all.

(i)	infinite plane
(ii)	semiinfinite plane
(iii)	circle
(iv)	semicircle
(v)	straight line
(vi)	cone
(vii)	cylinder
(viii)	sphere
(ix)	cube
(x)	point
	(ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Qus.(6) (a) If V = xz-xy+yz, express V in cylindrical coordinates,

(b) If $U = x^2 + 2y^2 + 3z^2$, express U in spherical coordinates.

Qus.(7) Let $\mathbf{H} = 5\rho \sin \phi \mathbf{a}_{\rho} - \rho z \cos \phi \mathbf{a}_{\phi} + 2\rho \mathbf{a}_{z}$. At point $P(2, 30^{\circ}, -1)$, find:

- (a) a unit vector along **H** (b) the component of **H** parallel to \mathbf{a}_x
- (c) the component of **H** normal to $\rho = 2$
- (d) the component of **H** tangential to $\phi = 30^{\circ}$