
Q1 [5 points] Consider the quantum money protocol that we learnt and answer the below questions from
the point of view of a malicious person who is traditionally named Eve. Eve receives a note from a legitimate
channel, say with denomination D, serial number S, and qubit in state |ψ⟩; she prepares a forged note in
the following manner.

She randomly decides between two measurement X or Z and measures |ψ⟩ using that measurement.
Suppose the outcome is |ψ′⟩. She creates a qubit in the state |ψ′⟩ for her duplicate note. She uses creates a
fake note using |ψ′⟩ with denomination D and serial number S.

Then, to legitimise her note, she presents the note to the bank for verification. This exercise will help
you compute Eve probability of success.

1. Suppose |ψ⟩ = |0⟩. What is the probability that |ψ′⟩ = |ψ⟩? 1
2 .1 +

1
2 .0 = 1

2 .

2. Prove that the bank always successfully verifies the note if |ψ′⟩ = |ψ⟩. State in the note matches with
what bank has on record.

3. What is the probability that the bank successfully verifies the note if |ψ′⟩ ̸= |ψ⟩ when |ψ⟩ = |0⟩? |ψ′⟩
can be + or − with probability 1/2 each; in each case, bank verification is successful with probability
1/2. Total prob. = 1/2.

4. Prove that the bank successfully verifies the note with only ½ probability if |ψ′⟩ ̸= |ψ⟩ for all possible
|ψ⟩. Similar to 3, prob. = 1/2.

5. Now combine both the cases of |ψ′⟩ = |ψ⟩ and |ψ′⟩ ̸= |ψ⟩ to compute the probability of the bank
successfully verifying the note. 1

2 · 1
2 + 1

2 · 1 = 3
4 .

Q2 [3 points] Write down the action of
√
X,

√
Y ,

√
Z gates in any one of these basis: standard basis,

Hadamard basis, {|+i⟩ , |−i⟩} (we will refer to this as the CP-basis – CP stands for circular polarization).

√
Z =

[
1 0
0 i

]
,
√
X = 1

2

[
1 + i 1− i
1− i 1 + i

]
= 1√

2

[
eιπ/4 e−ιπ/4

e−ιπ/4 eιπ/4

]
,
√
Y = 1

2

[
1 + i −1− i
1 + i 1 + i

]
= 1√

2

[
eιπ/4 −eιπ/4
e−ιπ/4 eιπ/4

]

The actions of
√
X and

√
Y can be expressed better in their respective eigenstates.

X = 1 · |+⟩⟨+|+ (−1) · |−⟩⟨−| ,
√
X = 1 · |+⟩⟨+|+ ι · |−⟩⟨−|

Y = 1 · |+i⟩⟨+i|+ (−1) · |−i⟩⟨−i| ,
√
Y = 1 · |+i⟩⟨+i|+ ι · |−i⟩⟨−i|

Q3 [3 points] Recall that X acts like a NOT-operator in the standard basis. Show that Z, Y and H too
act like a NOT-operator in some basis. Write down the states of all the three bases in either the standard
basis, the Hadamard basis, or the i basis.

Z acts as NOT in the Hadamard basis, Y acts as NOT in the {|0⟩ , ι |1⟩} basis and in the {|+⟩ ,−i |−⟩}.
H acts as NOT in the basis {eiπ/4 |+i⟩ , e−iπ/4 |−i⟩}.
There is an intuitive approach, using the Bloch sphere, to perform the same task for any arbitrary operator.

Eigenvectors of H are: 1±
√
2√

4±2
√
2
|0⟩+ 1√

4±2
√
2
|1⟩ with eigenvalues ±1. The Bloch vector (θ, ϕ) corresponding

to eigenvalue 1 is the axis of rotation for H; that corresponds to cos θ
2 = 1+

√
2√

4+2
√
2
, eιϕ sin θ

2 = 1√
4+2

√
2
,

from which we get cos θ = π/4 and ϕ = 0. Thus, H is a rotation about the Bloch vector (1, 0,−1)/
√
2 =

(X + Z)/
√
2 ≡ (π/4, 0).

This implies that H is a reflection about the plane perpendicular to (1, 0, 1)/
√
2 and any two vectors in that

plane that form a basis can be the basis we are looking for.
One such vector is (1, 0,−1)/

√
2 ≡ (3π/4, 0); Since basis vectors lie diametrically opposite in the Bloch

sphere, the other vector (still perpendicular to the axis) must be (−1, 0, 1)/
√
2 ≡ (π/4, π). Represented in

the standard basis, the corresponding states are:

cos(3π/8) |0⟩+ sin(3π/8) |1⟩ , cos(π/8) |0⟩+ eiπ sin(π/8) |1⟩
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Another pair is (0, 1, 0) ≡ (π/2, π/2) and (0,−1, 0) ≡ (π/2, 3π/2); these correspond to the |+i⟩ and |−i⟩
states.

Q4(a) [0 points, do not submit] Read about 3D rotations using Euler angles.

Q4(b) [0 points, do not submit] Understand how RZ(θ) and RY (θ) modifies the above basis states for
different values of θ.

4



Q5 [1+3+4+3+1+2=14 points] In this question you will design and implement the following operator:

U = |+i⟩⟨0|+ |−i⟩⟨1|
1. Write down the matrix form of U . U = 1√

2
[1, 1; i,−i].

2. Apply U on the states in the standard basis, states in the Hadamard basis, and states in the CP-basis.
You should write the output states in the standard basis.

|0⟩ → |+i⟩ , |1⟩ → |−i⟩
|+⟩ → |0⟩ , |−⟩ → ι |1⟩
|+i⟩ → 1+i

2 |0⟩+ 1+i
2 |1⟩ = 1+i√

2
|+⟩ , |−i⟩ → 1−i

2 |0⟩ − 1−i
2 |1⟩ = 1−i√

2
|−⟩

3. Draw a Bloch sphere and show these states on the sphere: U |0⟩, U |1⟩, U |+⟩, U |−⟩.
4. Any 3D rotation can be decomposed as three rotations: about Z by γ, about Y by δ, about Z by β.

With the help of trial-and-error, identify β, δ, γ such that the sequence performs the same mapping
as U on |0⟩, |1⟩, |+⟩, |−⟩. The angles should also satisfy U = eιαRZ(β)RY (δ)RZ(γ) for some α.
Hint: Use 3D rotation ideas. The angles are either 0, π/2 or π, so there are only a few combinations.
U = ei·5π/4RZ(π/2)RY (π/2)RZ(π)).

5. Use Qiskit composer to create a 1-qubit circuit that first applies RZ(γ), then applies RY (δ), and finally
RZ(β). Add a measurement to a classical register.

circuit.rz(np.pi, qreg_q[0])

circuit.ry(np.pi / 2, qreg_q[0])

circuit.rz(np.pi / 2, qreg_q[0])

circuit.measure(qreg_q[0], creg_c[0])

6. Copy the python code that created the circuit. Then paste it inside this boiler-plate code. You can
either install qiskit on your computer or use Google colab for the same.

from qiskit import QuantumCircuit, transpile, QuantumRegister, ClassicalRegister

from qiskit_aer import AerSimulator

from qiskit_aer.noise import NoiseModel, pauli_error, depolarizing_error

from qiskit.providers.basic_provider import BasicSimulator

import numpy as np

import math

# add your circuit here

# make sure the object for QuantumCircuit is named ’circuit’

backend = BasicSimulator()

# Run the circuit on |0> and get the results

job = backend.run(circuit, shots=1000, initial_statevector = np.array([1, 0]))

result = job.result()

counts = result.get_counts()

print(counts)

Print the counts that the code outputs for different initial statevector corresponding to |0⟩, |1⟩,
|+⟩, and |−⟩. Both outcomes are equally likely for the initial states |0⟩ and |1⟩. When the initial state
is |+⟩, only 0 is observed, and when the initial state is |−⟩, only 1 is observed.
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