HW5 (25 points)

For this homework consider the set $A=\{6,2,12,7,3,18,11\}$.
Problem 1. (Points :3) Design a QUBO for the Partition optimization problem. For that, first read Section-II of
https://arxiv.org/pdf/2211.02653.pdf.
Then, write down a QUBO based on the similarity of the Partition problem and the SubsetSum problem - these are described below.

SubsetSum Given a set $A=\left\{x_{1}, \ldots, x_{n}\right\}$ of integers (say positive), and a target (positive) integer T, is there a subset $A^{\prime} \subseteq A$ whose sum is T (i.e., $\left.\sum_{x \in A^{\prime}} x=T\right)$.

Partition (Decision) Given a set $A=\left\{x_{1}, \ldots, x_{n}\right\}$ of integers (say positive), is there a way to divide A into two non-overlapping subsets A^{\prime} and $A^{\prime \prime}\left(\right.$ so, $A^{\prime} \cup A^{\prime \prime}=A$ and $A^{\prime} \cap A^{\prime \prime}=\emptyset$), such that $\sum_{x \in A^{\prime}} x=\sum_{x \in A^{\prime \prime}} x$.

Partition (Optimization) Given a set $A=\left\{x_{1}, \ldots, x_{n}\right\}$ of integers (say positive), partition A into two non-overlapping subsets A^{\prime} and $A^{\prime \prime}\left(\right.$ so, $A^{\prime} \cup A^{\prime \prime}=A$ and $\left.A^{\prime} \cap A^{\prime \prime}=\emptyset\right)$, such that $\left|\sum_{x \in A^{\prime}} x-\sum_{x \in A^{\prime \prime}} x\right|$ is minimized.

You should write the QUBO for the optimization version of Partition for the above A.

Problem 2. (Points :2) Write down a Hamiltonian H whose ground state energy equals the optimal value of the Partition problem on A. The standard approach is to replace the variable x_{i} by the operator $\frac{I-Z_{i}}{2}$.

Problem 3. (Points :6) Let $|\psi\rangle=|+\rangle^{\otimes 7}$. Use IBM's Qiskit simulator or a QPU to estimate $\langle\psi| H|\psi\rangle$. Submit the details of the experiments, all intermediate calculations/Jupyter notebook, and final result. Does your experiment produce the optimal value?

Problem 4. (Points :6) Use VQE (refer to Qiskit API for qiskit.algorithms.minimum_eigensolvers.VQE) to estimate the ground state energy of H. State choices made for estimator, number of parameters, ansatz, optimizer, and the other attributes of the VQE class. Submit a table or a plot that shows, for each evaluation, the values of the parameters, the estimated mean value.

Problem 5. (Points $: 2+2+4=8)$ Consider the setting of Grover's search with a unique solution. Let x denote the unique solution of $f()$, and let U_{f} be the oracle to identify the solution.

$$
U_{f}|y\rangle|b\rangle=|y\rangle|b\rangle \text { for } y \neq x, U_{f}|x\rangle|b\rangle=|x\rangle|b \oplus 1\rangle
$$

Consider the states $|x\rangle$ and $\left|x^{\perp}\right\rangle$ where the latter is a normalized state that is orthogonal to $|x\rangle$; observe that they form a 2 -dimensional basis. Let t be any small positive real number.

1. Show that $e^{-i|x\rangle\langle x| t}=I+\left(e^{-i t}-1\right)|x\rangle\langle x|$ (Hint:use Taylor expansion if everything fails).
2. Show the action of the operator $I+\left(e^{-i t}-1\right)|x\rangle\langle x|$ on the states $|x\rangle$ and $\left|x^{\perp}\right\rangle$.
3. Based on the above observations, explain how to implement the operator $e^{-i|x\rangle\langle x| t}$. You will need to call U_{f} and may need an additional ancillæ as well (in that case, you must return the ancillæ to its initial $|0\rangle$ state). Explain the action of your circuit on any state $|\phi\rangle=\alpha|x\rangle+\beta\left|x^{\perp}\right\rangle$.
