```
================= Part A ==================
```

1. Let $L$ be a set of strings over $\{0,1\}$ which

* do not contain the substring " 00 " in the start or in the middle (it may appear at the end - so, "00" is itself in L , but 000 is not in L )
* do not end with "01"

Show that $L$ is regular.
2*. Construct an NFA that accepts all strings over the alphabet $\{a, b\}$ that contains at most one occurrence of aa. The string aaa has two occurrences of aa. Prove correctness (write only the level-1 claims).T
$3^{*}$. Prove that this language is regular: $\left\{0^{\wedge} k u 0^{\wedge} k: k>=1\right.$ and $u$ belongs to $\left.\{0,1\}^{*}\right\}$.
================== Part B =================
4. Define Switch1(L) = \{ flip every odd bit of $w: w$ in $L$ \}. Show that regular languages are closed under Switch1. Hint: Since L is regular, there is a DFA D accepting L. Start with that D. If 110010 is in L, then 011000 is in Switch1(L).
5. Define Switch2 $(L)=\{w$ such that $L$ contains $w$ ' where $w$ ' is a version of $w$ in which every alternate 1 is switched to zero, starting from the first 1$\}$. For example, if 10101010 is in $L$, then 00100010 is in Switch2(L). Show that regular languages are closed under Switch2.

6!. Define Switch3( $L$ ) $=\{w$ such that $L$ contains $w$ ' and $w$ is a version of $w$ ' in which every alternate 1 is switched to zero, starting from the first 1$\}$. Show that regular languages are closed under Switch3.
$7^{*}$. Zerofy $(\mathrm{L})=\left\{0^{\wedge}\{|\mathrm{w}|\}\right.$ : w is in L$\}$ which are unary languages over $\{0\}$. Prove that the regular languages are closed under Zerofy.

## ================ Part C ==================

8* (easy). Construct an equivalent DFA for this NFA. Hint: Create the states of the DFA as you need (by following the transitions), instead of first creating one for each subset of states.


A table like this will be helpful. You need not show the transitions going to the \{\} (empty set) state, as long as you mention that "transitions that go to the stop state \{\} are not shown". Verify that the DFA is correct by taking some examples.

| $q$ : A state of DFA / <br> A subset of NFA states | Is this a final state of <br> DFA? | $d(q, 0)$ | $d(q, 1)$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |

