CSE322 Theory of Comput. (L23)

$L \leqslant_{T} L_{2}$
$41 \leqslant_{m} L_{2}$
Turing-reduction
A different kind of reduction
Many-one reduction (aka. mapping reduction)
Tum: HALT is undecidable.
Proof: Assume HALT is decided by D. Construct decider B for $A-T M$ using D.

$$
B(\langle M, \omega\rangle):
$$

// Construct M^{\prime}, w^{\prime} such that $B(\langle M, w\rangle)$ accepts iff $D\left(\left\langle M^{\prime}, w^{\prime}\right\rangle\right)$ accepts.
$/ /$ Does this work? $M^{\prime}=M_{1} w^{\prime}=w ? ?$? D is unable to distinguish between halt-accept and halt-reject.

Call $D\left(\left\langle M^{\prime}, w^{\prime}\right\rangle\right)$. If D accepts, B accepts. If D rejects, B rejects.
Lemma:-
$\left\langle M_{1} \omega\right\rangle \in A T M$ iff $\left\langle M_{|\omega\rangle}^{\prime}\right\rangle \in H A L T$ def $\operatorname{DATM}(\langle M, w\rangle)$:

* If DHALT () accepts, DATMaccepls
If DHALT () rejects, DATM rejots.

$$
w^{\prime}=w
$$

$\operatorname{dff} \operatorname{Red}(\langle M, w\rangle):$

$$
M^{\prime}=M^{\prime}(x):
$$ $\omega^{\prime}=\omega$ construct M^{\prime} as output $2 M^{\prime}\left|w^{\prime}\right\rangle$

given
a. Run M on x.
b. When M accepts x, M^{\prime} accepts x.

DHAL $\left(\left\langle M^{\prime}, w\right\rangle\right) c$. When M rejects x, M^{\prime} loops and never halts.
many-one Reduction
$L 1$ < $\overline{\bar{m}} L 2$ if ... there is a $T M$ / algorithm / reducer R s.t.
$\star R$ (instance of $L 1$) \rightarrow instance of $L 2$

* x is in L1 iff $R(x)$ is in L2 correchess claim
$A-T M<=H A L T \quad A-T M$ m-reduced to HALT

LI < $\bar{T} L 2$ if ... there is a $T M$ / algorithm / reducer R s.t. R decides (or recognizes) $L 1$ by making calls to a TM for deciding (or recognizing) L2.

Properties of many-one reduction
For any language L,
Is $L<=_{m} L$?
$R(x)$:return x
$x \in L$ ifs $R(x)=x \in L$.
R12 R23
$L 1 S_{m L 2} L 2 \leqslant_{m} L_{3}$
Suppose language L1 reduces to language L2 and L2 reduces to language L L.
Show: L1<=L3 def $R 13(x): / 1 x$ should be an instance of dopers
$x \in L 1$ iff $R I(x) \in L 3$.

$$
\begin{aligned}
& y=R 12(x) \\
& z=R 23(y) \\
& \text { output } z
\end{aligned} \quad \longrightarrow x \in L \text { iff } y \in L 2
$$

RIV
If $L 1<\overline{\text { m }} L 2$, show $L 1$-complement $<=L 2$-complement $\overline{A-T M}<\overline{H A T}$
$x \in L 1$ iff $R 12(x) \in L 2$
$x \in \bar{L}$ inf $R(2(x) \in \overline{L 2}$
$<=$: At least "as hard as"
$x \in L 1$ ifs $R 12(x) \in L 2$
Suppose L1 $<=L 2$

1. If $L 2$ is decidable ...? by 72 then L is decidable
2. If L1 is undecidable ...?
$L 2$ is atleast ashard as LI
($L 1$ is not harder than L2) def $D 1(x)_{0}^{\circ} \quad\left\{\begin{array}{l}D \mid \text { always halts } V \\ \text { if } x \in L 1, D \mid \text { accepts } x \\ \text { if D1 accept } x, x \in L 1\end{array}\right.$ Run D2 (y) and do whatever D2 does
then L2 is undecidable
3. If $L 2$ is recognizable ... ?
then L is recognizable
4. If $L 1$ is not recognizable ...?
then $L 2$ is not recognizable.

Show: $E-T M<=E Q-T M$
$\operatorname{det} \operatorname{Red}(\langle M\rangle):$
$C^{L(N)=\phi}$
construct a TM N sn. Nrejects all strings retum $\langle M, N\rangle$

Claim:- $\langle M\rangle \in E T M$ ifs $\langle M, N\rangle=\operatorname{Red}(\langle M\rangle) \in E Q T M$.

Show: EQ-TM is NOT R.E.
Leve11: Reduce $\overline{A T M}<=E Q-T M$
Construct a computable function $f()$ s.t.
(a) $f(M, w)=(M 1, M 2)$ s.t.

$$
L\left(M_{1}\right)=\phi
$$

(b) Macsits a iff $L(M 1)=L(M 2)$
ll
Macceps ω iff $L\left(M_{2}\right) \neq \varnothing$
$\operatorname{det} \operatorname{Red}(\langle M, \omega\rangle) 0_{0}$
Condruct M, that rejects all strings Construct $M_{w}(x)$:

If M acceptsw,

$$
L(M \omega)=\{\omega\}
$$

If M doesmir acceforo
$L(M \omega)=$
if $x \neq w$: rejects
else: simulates $M(\omega)$ and does whatever M does
retuon $\left\langle M_{1}, M_{w}\right\rangle$

Show: EQ-TM-complement is NOT R.E.
Level1: Reduce $A T M$-complement $<=E Q-T M$ M accelst ${ }^{2}$ iff $L\left(M_{2}\right)=\sum^{*}$
$\operatorname{sef} \operatorname{Red}(\angle M, N))^{A T}:$
Construer M1 that areepbs everysthing
$L\left(M_{2}\right)<$ Constuct $M_{2}: M_{2}(x)$: if $x \neq w$: accept ebe dowhatever $M(x)$ drees.

Thm: EQ-TM is neither RE nor coRE !!!

Show that ATM cannot be many-one reduced to ETM. Proof by contradiction: Assume ATM \leqslant_{m} ETH.

$$
\begin{array}{ll}
\overline{E T M}=\{\langle M\rangle \mid L(M \neq \phi\} \quad & \overline{A T M} \leqslant m \\
& \$_{m} \overline{E T M} \\
& \notin R E \\
& \psi \in R E
\end{array}
$$

Contradiction

Non-trivial property of TM Lang.
P : any "non-trivial" property (language) of languages of Ms.
$P=\{\langle M\rangle: M$ is a $T M$ and $L(M)$ has some property $\}$
$\rightarrow \star$ There are some $T M s$ in P and some $T M s$ not in P.

* Whether $\langle M\rangle$ is in P or not depends ONLY on $L(M)$.
$L P 1=\{\langle M\rangle: L(M)$ is infinite $\}$
$L P 2=\{\langle M\rangle: M$ has more than 10 states $\}$
$L P 3=\{\langle M\rangle: M$ accepts 110101$\}$
$L P 4=\{\langle M\rangle: L(M)=\{ \}\}$
LP $=\{\langle M\rangle:$ there is some w for which $M(w)$ moves left at some point $\}$
$L P 6=\{\langle M\rangle: M$ uses at most 10 extra cells on empty input $\}$
$L P 7=\{\langle M\rangle: M$ has even number of states $\}$
$L P 8=\{\langle M\rangle: M(' h e l l o ')$ has 'world' written on tape at some point of time $\}$
$L P Q=\{\langle M\rangle$: any string accepted by M can be recognized by some $T M$ with even number of states $\}$
$L P 10=\{\langle M\rangle: M$ is a $T M\}$
$\left\{\langle M\rangle: L(M) \leqslant \Sigma^{2}\right\}$ Rice's theorem $\{\langle M\rangle: M$ visits both que t of language
$L P=\{\langle M\rangle: L(M)$ has nontrivial property $P\}$ is undecidable!!!
Can you decide if ...? $\quad\{\langle M\rangle$ ¿L(M) has even parity slings $\}$
L':reglang.
* TM accepts only (all or some) strings of length 12345?
$\{\langle M\rangle: L(M) \star T M$ accepts a finite set of languages?
二'\} $\begin{aligned} & \text { © } M \text { accepts some regular language? }\end{aligned}$
$\left\{\langle M\rangle^{\prime}, L(M) \star T M\right.$ accepts some $C F L ?$
is regular* $T M$ accepts language $L(N)$ where N is a given $T M$?
[Rice] Semantic properties of $T M$ s are not decidable.

