CSE322 Theory of Comput. (L22)

(A) Contruct a decider (recognizer)
$p 1 \leq p 2$
for P1 assuming access to a decider (recognizer) for $P 2$
(5) Sivee p1 is undec (unrecoof),

Another proof of HALT is undecidable. $\downarrow^{M, w}$
$A-T M<H A L T$ wing as
Level 1: Proof by contradiction.
Suppose H can decide HALT.
Construct decider D for $A-T M$.

D can call H on any $\langle N, x\rangle$.
©
$D(\langle M, \omega\rangle): / /$ Does M accept w ?

1. Run H on $\langle M, w\rangle$
2. If H accepts $\langle M, w\rangle / / M(w)$ halts Rum M on W and do wher M does
3. If H rejects $\langle M, w\rangle / / M(w)$ does'nt halt

(B) \rightarrow Thu. If HALT is decidable, then $A-T M$ is decidable.
${ }^{(4)} D(\langle M, w\rangle): / / D o e s M$ accept w ?
4. construct M^{\prime} : copy of M
but changed to loop on q-rej
5. Run H on $\left\langle M^{\prime}, w\right\rangle$
6. If H accepts $\left\langle M^{\prime}, w\right\rangle / / M^{\prime}$ haltsons
\qquad
7. If H rejects $\left\langle M^{\prime}, w\right\rangle / / M_{h}^{\prime}$ Nososith $h=1$ on
(B)
\qquad

Prove by Turing Reduction
$\left.P 1 \leqslant P_{T} \quad P 2 \leqslant T P 3 \Rightarrow P 1 \leqslant_{T P 3}\right\}$ transitive
Given decider for X, construct decider for Y
Given recognizer for W, construct recognizer for $Z \quad Z \leqslant W$

Useful for proving that ...
$\star X$ is undecidable (when Y is known to be undecidable)
$\star W$ is not recog. (When Z is known to be not recognizable)

* It X is decidable then Y is decidable.

$$
E-T M=\{M: L(M)=\{ \}\}
$$

Does this browser EVER correctly display any webpage?

From M and w, construct $M w$ s.t. $\langle M, w\rangle$ is in $A-T M$ iff $M w$ is not in $E-T M$. Mw (z):

Macceptso ω
iff $L\left(M_{w}\right) \neq\{ \}$

1. If $z!=w$, reject

त 2. If $z=w$, simulate M on w (accept, reject accordingly)
$L(M w)=\{ \}$ iff M does not accept w
$L(M w)=\{w\}$ iff M accepts w M rejects every other string $A-T M \leqslant T E T M$
(1) Given decider E for $E-T M$, create decider D for $A-T M$.
$D(\langle M, \omega\rangle)$:
Q: What does this say about $E-T M$?

1. Create $M w$ using M and w
2. Rems DETM (M_{n}) $)$.
3. If DETM accepts: D rejects:
4. Is DETM rejects: Doscopts.
Q : Given decider E for $E-T M$, create decider D for complement of $A-T M$.

$$
\text { Ex:- ATM } \leq E T M
$$

$E-T M=\{M: L(M)=\{ \}\}$ is undeciable
Level-1: We will prove this by contradiction and reduction. Specifically, we will construct a decider D for $A-T M$ assuming
the existence of a decider E for $E-T M$.
Level-2: Consider the following TM.
$D(\langle M, \omega\rangle)$:

1. Beater encoding of a TM M_{∞} from M and ω as follows: Mw (2):
2. If $z!=w$, reject
3. If $z=w$, simulate M on w (accept, reject accordingly)
4. Run $E(\langle M \omega\rangle)$
5. If E accepts $\langle M \omega\rangle, D$ rejects $\langle M, \omega\rangle$
6. Else,D accepts $\langle M, \omega\rangle$

Claim: If M accepts $\omega, L(M \omega)=\{\omega\}$. Else, $L(M \omega)=\{ \}$.
// Add brief justification for claim...
Claim: D is a decider for A-TM.
1/ Add justifications: (i)) D is a decider (ii) $L(D)=A-T M$
Since $A-T M$ is undecidable, E cannot exist, Jtence, $E-T M$ is undecidable.

$$
\begin{aligned}
& E Q-T M=\{\langle M, N\rangle: L(M)=L(N)\} \\
& E T M \leqslant \leqslant_{T} E Q M \begin{array}{l}
\text { Does your quicksort implementation } \\
\text { match my implementation? }
\end{array}
\end{aligned}
$$

Level-1: Proof by reduction from $E-T M$. (equivalently, reducing $E-T M$ to $E Q-T M$)

Level-2: Suppose you have a decider for EQ-TM.
$\operatorname{DETM}(\angle M /)_{0}$ J That is, ... some TM (err... algorithm)

1. Construct JTM N which takes M1 and M2 and decides (yes/no)

S!. N rejue's. $L(N)=$ if $L(M 1)=L(M 2)$. (How) Can you use it fo decide if $L(T)=\{ \}$ for ANY given TM T?
2. $\operatorname{Rum} \operatorname{DEGTM}(\angle M, N\rangle), \quad \rightarrow L(M)>L(N)=\{ \}$
3. If DEQTM accept T : $D E T M$ accepts
4. " "rejects: " rejects

$$
\hookrightarrow L(M) \neq L(N)=\{ \}
$$

5.12 J $=\{w: w=0 x$ for some x in ATM or $w=\{x$ for some x in $A T M$-complement $\}$
Show that J is not in $R E$ or coRE. Assume $J \in R E$

$$
\overline{A M M} \leq J_{\mathbb{R}} \Rightarrow J \& R E \Rightarrow A T M \in R E A
$$

1. Reduce ATM-complement to J. What does this prove?

"M doeshit accept ww, accept
(Rum RTS (Dy)
It RJ accepts oI, reject x If " rejects" 1 accepts

Run RJ (by)
/f Aterthexpon BY $\Rightarrow y$ should be accepted
If RJ accepts, ${ }^{7}$ RATM accept " " rejects " rajets.
5.12 J $=\{w: w=0 x$ for some x in ATM or $\quad \overline{A T M} \leqq \bar{J}$ $w=\{x$ for some x in $A T M$-complement $\}$
Show that J is not in RE or coRE.

$$
\text { Let } J \in \operatorname{coRE}
$$

$$
\begin{array}{ll}
\text { Show that } J \text { is not in RE or coRE. } &
\end{array} \quad \Rightarrow \bar{J} \in R E
$$

2. What is J-compl? How to prove that J is not in coRE?

Given RJ for \bar{J}, construct $R \overline{A T M}$ fo $\overline{A T M}$.
def RATM $(\langle\bar{M}=w\rangle)$:
Call RJ (OY)
If $R \bar{J}(04)$ accepts: $y \in \widehat{A T M}, \overline{R A T M}$ accepts rejects.

