CSE322 Theory of Computation Lec 21

REC (Decidable) is a proper subset of RE (Recognizable).
Polynomial Solvability is recognizable but undecidable.

Natural numbers $N=0,1,2,3, \ldots$ are countable.
Any set that has a 1-1 correspondence with N is countable.
S is countable if one can define "get y-th element of S " for any natural num. y and for every x in S, x is the y-th element for some y. Are even numbers countable?
Are the final scores in TOC of all students countable?
Are the rational numbers countable?
Are the set of infinite strings countable?
ALLDFA $=\{w: w$ is an encoding of a DFA over alp. $\}$ ALLTM $=\{w \mid w$ is an encoding of a TM over alph. $\}$ Claim: ALLDFA and ALLTM are countable sets.

Q: Define "get y-th TM over alph." How?
def get $T M(k):{ }^{\operatorname{counth}}=0$ get $k-t h T M$ for every $=0$ swing in string order:
if ω does not encode aTM: ignore els, counterte
if counter $==k$: cusp ut w.

ALL : class of every language over any alph.
000
Claim: $A L L$ is uncountable. $A L L=\{L \mid L \text { is a language over some alph. }\}^{\omega}$

$$
\begin{aligned}
& \text { (A) }=\{\quad 0, \quad 00,01, \quad 000,001, \cdots\} ; n \text { if } \omega_{4} \not L_{4}
\end{aligned}
$$

characteristic fraction

Assuming an ordering that defines the $i-$-th language in $A L L, L_{1}$ design a language L which does not belong to ALL.

$$
\left.\begin{aligned}
& \text { sign a language } L \text { which does not belong to ALL. } \\
& X_{L}\left(w_{i}\right)=\left\{\begin{array}{cc}
w_{i} & \text { if } \\
w_{i} \in L_{i} \Rightarrow X_{L_{i}}\left(w_{i}\right)=1 \\
1 & \text { if } \\
w_{i} & \notin L
\end{array} L_{i} \not X_{L_{i}}\left(w_{i}\right)=0\right.
\end{aligned} \right\rvert\, A L C\left\{\begin{array}{c}
L_{2} \\
L_{3} \\
L_{4} \\
\vdots
\end{array}\right.
$$

For any alphabet, number of languages more than number of possible Ms. ALLTM is strictly smaller than ALL.
$\{\langle M\rangle: M$ is a $T M\}$ vs $\{L: L$ is a language of some $T M\}$
$A L L T M=\{L \mid L$ is a language of some $T M\}$

Halting Problem
Suppose HALT $=\{\langle M, w\rangle: M$ halts on input $w\}$ is decidable (by TM D).
Diagonalize against all $T M s$ on self-inputs.

Construct TM U:
$U(w)$:

This is the second method for proving undecid.
Gun $D(\langle u,\langle u\rangle\rangle)$

Behaviour of $U(\langle U\rangle)$ is contradictory!

1. if ω is not TM encoding, rejects

2 if ω is TM encoding:
$3, w=\langle M\rangle=\langle u\rangle$
4. Run $D(\langle M, w\rangle) \quad D(\langle M,\langle M\rangle\rangle)$
J. If D accepts $\langle M, w\rangle$, // M halts on w
\qquad
7. If D rejects $\langle M, w\rangle$, // M doesn't halt on w
8. $U(w)$ arcefor

Decidable and Recognizable lang.
Thin L is decidable of L is recognizable and L-complement is recognizable.
Proof:-
\Rightarrow Suppose L is decidable. Then $L \in R E$.
\Rightarrow LGRFC. $\quad \therefore$ T GRE.
<= Suppose M recognizes L and M^{\prime} recognizes L^{\prime}.
Construct decider D for L.
$D(x):$
Runs M and M^{\prime} parallels ont.
If M accepts, D accepts If M'accelpts, D rejects.

Post's Correspondence Problem

$23421 \longrightarrow a b b b a$ a $a b$ baa

Not in syllabus: Given $\langle M, w\rangle$, construct a set of cards such that...

- if M accepts w then the cards have a matching
- if M does not accept w then the cards do not have a matching

Unrecognizable language: $A-T M$-complement
Proof: Proof by contradiction.
Suppose $A-T M^{\prime}$ is recognizable.
we know that $A-T M$ is recognizable.

$$
\overline{A-T M}=\{\langle M, \omega\rangle \mid
$$

M dolsn't accept w?
: ATM would bedecidable.
This is a contradiction.
$E X^{\prime}-\quad R E \cap C O R E=R E C$

$$
\begin{aligned}
& \text { Complement Classes } \\
& \mathrm{co}-\mathrm{C}= \\
& \{L \text { : complement }(L) \text { in } C\} \\
& L \in C O C \leftrightarrow \bar{L} \in C \\
& \tau_{\mathrm{R}} \in \operatorname{CoC} \leftrightarrow L E C \\
& \text { co-R.E. }=\text { co-Recognizable } \\
& =\{L \text { : complement of } L \text { is } \\
& \left.\begin{array}{l}
\text { R.E./recognizable }\} \\
\overline{A-T M} \in \operatorname{CoRE}
\end{array} \overline{A T M}\right)=A T M \in R E \\
& \text { The: DEC } \subseteq \text { CORE } \\
& \text { If } L \in D F C \text { then } L \in C \text { SRo } \\
& \text { Proof:- } L \in D E C \rightarrow L \in D E C \\
& L \in G O R E \leftarrow I \in R E
\end{aligned}
$$

