CSE322 Theory of Computation (L20)
$L=\{\langle D\rangle \mid D$ is the smallest $D F A$ urns the number of states accepting L(D) $\}$
$L^{\prime}=\left\{\langle N\rangle \left\lvert\, N \cdots \quad \begin{array}{lll}\langle N A\}\end{array} \begin{array}{ll}\left\langle\rightarrow w_{1} \rightarrow w_{2} \rightarrow \ldots\right. \\ \rightarrow w_{2 n-2} \rightarrow w^{2}\end{array}\right.\right.$
PDAP, string $v:-\quad S \rightarrow \varepsilon X$

Chomsky Normal Form
Given G in CNF,

Every rule is of the form: $A \rightarrow B C n$ to decide if
or, $A \rightarrow a$ (a is terminal)
S does not appear on the right side
Additional rule, if needed: $S \rightarrow e$

$$
\operatorname{sic}_{s \rightarrow \square}^{\ell}
$$

try all possible derivations of
Tum: Any CNF derivation of an n-length string has $2 n-1$ steps.

\# leaf nodes =?
\# internal nodes =?

Minimum depth $=1+\operatorname{ceil}(\log n)$
Maximum depth $=n$

1. Ensure S does not appear on right side of any rule Add: SO \rightarrow S
2. Remove e-rules " $X \rightarrow$ e" for all X (except S)

Find all nullable variables.
A $\quad A$ is nullable if there is a rule: $A \rightarrow e$ or

$B \rightarrow C A D A$
$B \rightarrow C A D A$
$C D A$
$C A D \mid C D$
Remove $A \rightarrow$ e for all nullable A.
For every rule $B \rightarrow \ldots$..., create a copy with A replaced by e.
3. Remove unit rules: " $X \rightarrow Y$ " for all Y
A derivable $=\{B \in V: A \rightarrow B$
B is A-derivable if $A \rightarrow B$ or there exists some A-derivable C s.t. $C \rightarrow B \rightarrow B\}$
For all (A, B) s.t. $A \Rightarrow \star B(B$ is A-derivable $) \quad A \ngtr B \quad B \rightarrow \omega$
For every rule non-unit production $B \rightarrow x$ add a rule $A \rightarrow x$
Remove all unit productions
$A \rightarrow w$
4. Simplify rule " $A \rightarrow+1+2+3 \ldots+k$ " ($t i$ could be terminal or variable)

Replace: $A \rightarrow C \times B$ by $A \rightarrow C X B$ and $X \rightarrow x$
Replace $A \rightarrow B C D$ by $A \rightarrow B E, E \rightarrow C D$

$$
\begin{aligned}
& \text { Convert to CNF } \\
& \mathrm{SO} \rightarrow \mathrm{~S} \\
& S \rightarrow A S A \\
& S \rightarrow a B \\
& \cup A \rightarrow B \\
& A \rightarrow S \\
& B \rightarrow b \\
& B \rightarrow \& \quad A \rightarrow B 1 \\
& B \rightarrow \text { 昗 } \quad B \rightarrow 8 \\
& B, A \quad A>S \\
& S \rightarrow A S A \mid \\
& A S|S A| S \\
& S \rightarrow \cdots S \rightarrow \operatorname{CASA} \\
& \rightarrow S A \xrightarrow{4} \ldots
\end{aligned}
$$

Finding nullable variables
$N=\{x \in V: x \rightarrow \varepsilon$ is a rule $\}$
do $\{$
for every rule $X \rightarrow Y_{1} Y_{2} \cdots Y_{k}$ //only variables if $Y_{1} \cdots Y_{k}$ are all nullable add X to N
\}while (N is updated)
Finding A-deriverable variables
$N=\{$ variable X st. $A \rightarrow X$ is a rule $\}$ do $\{$
for every unit production $B \rightarrow C$
if B is A-derivable
add C to N
\} while (N is updated)

CYK algorithm

$$
x_{i, j}=\{A, B \ldots\}
$$

which can generate $w_{i} . . . w_{j}$

$$
\begin{aligned}
& x 2,2=? \\
& x_{2,3}=?
\end{aligned}
$$

Does this CFG produce baba?
Add to $X_{i, j}$ any V st.

$$
V \rightarrow>Y Z \text { exists, }
$$

$$
\begin{array}{lll|l}
S & \rightarrow & A B \mid B C \\
A & \rightarrow & B A \mid a \\
B & \rightarrow & C C \mid b \\
C & \rightarrow & A B \mid a
\end{array}
$$

Look at all pairs YZ from

$$
\begin{aligned}
& X(i, i) \& X(i+1, j), \\
& X(i, i+1) \& X(i+2, j) \ldots \\
& X(i, j-1) \& X(j, j)
\end{aligned}
$$

$$
A-P D A=\{\langle P, w) \mid L(P) \ni \omega\}
$$

$A-C F G=\{\langle G, w\rangle: G$ generates $w\}$
$A-C F G$ is decidable. $G \rightarrow G^{\prime}$ dreckif G^{\prime} geverens ω.
Claim
Je Lis a cf L? $J G$ sn $L=L(G)$. $M-A-C F G(G, v)$ todecide Confexf-Free Languages are Decidableif wel.
Suppose C is a CFL.
Therefore, there exists a PDA / CFG to recognize C.
Construct MC -- use PDA / CFG
$M C(w): / /$ accept if w is in C, reject otherwise

1. Run $A-C F G(\langle G, \omega\rangle)$...
$M(x)$: deciderfow run $M-A-C F G(G, x)$ and do whateverit does.
Claim: fyel, Maccepts. daim" ffxty, Mrejects.
$L=\{\langle P, q\rangle: P$ is a PDA, q is its state, q is a not a useless state (not involved in any transition for any input string) $\}$ Is L recognizable? Is L decidable?
$\operatorname{ML}(\langle p, q\rangle):$
P^{\prime} : copy of P with "q removed " x
Decide if $L(P)=L(P 1) . X \quad E Q P D A=\left\{\left\langle P_{1}, P_{2}\right\rangle:\right.$
$M L^{\prime}(\langle p, q\rangle):$
Non-determinisically guess aw
Run $P(\omega)$ making non-deterministic choices at every step.
If ever q is reached, gobo gre.
Cain:- It $\langle p, q\rangle \in L$, for some $w \Delta$ some nordet choice, P will Claim:- Exercise. reach $9 \Rightarrow M L^{\prime}$ accept
$L 1=\{\langle P, q\rangle: P$ is a $P D A, q$ is its state, q is a useless state (not involved in any transition for any input string) $\}$ Is $L 1$ decidable? Hint: What is complement of L (from above)?

Exercise:-
$A-T M=\{\langle M, w\rangle: T M M$ accepts $w\}$
Tum. A-TM is recognizable. Use a UTM to recognize.
1936: HALTING (similar) is not decidable (but recognizable).
$=\{\langle M, \omega\rangle: T M \quad M$ halts on $\omega\}$
$M H$ ($\langle M, \omega\rangle)$:
Run Mon wo sing UTM.
POLYSOL $\xlongequal{\text { In }}=\left\{\begin{array}{l}\text { sitter ace pp a reject, forb gacepp } \\ p(x 1, x 2, \ldots x n): p \text { is a polynomial }\end{array}\right.$ with integer solutions $\}$

Tum. POLYSOL is recognizable.
1970: POLYSOL is not decidable (but recognizable).

$$
\begin{aligned}
& A-T M=\{\langle M, w\rangle: \\
& \text { TM accepts } w\}_{1} \\
& \text { The. A-TM is undecidable. } \\
& \text { Proof: Proof by contradiction and diagonalization against all } \mathrm{TMs}_{3} \text {. } M_{3}
\end{aligned}
$$

Let A-TM be decidable by TM D.
Proof by contradiction: Construct a TM (using D) and show that this TM cannot be in the list of all Ms.
$U(y):$
$M=$ "get encoding of y-th TM"
Run $D(\langle M, y\rangle)$
If D accepts, // My) accepts U rejects
If D rejects, // My) does not accept on U accept
$\forall i, U(i)$ is different from $M_{i}(i)$.

Suppose $u=M_{53}$
some yes.
$\langle y\rangle=53$
$u(y)=\quad$ proving undecid.

Thu. $U(y)!=M y(y)$ for all y, therefore $U!=$ My for all y.

