
CSE322 Theory of Computation
 Lec 19

3.13 L is decidable iff L is string-order enumerable.
<= Level 1: Suppose E enumerates L in the string order.
We will construct decider D to decide L.
D(x) :

...

...
Claim: If x is in L, D(x) halts and accepts.
Claim: If x is not in L, D(x) halts and rejects.

What if x comes after
the last string in L?

3.13 L is decidable iff L is string-order enumerable.
=> Level 1: Suppose M decides L.
We will construct enumerator E which enumerates L in the string ord.
E() : // enumerator ignores input

...

...

Closure Property: Union
* If L1 and L2 are decidable, then L1 U L2 is decidable.

Level 1: Proof by construction.
Level 2: L1 is decidable => M1 decide L1. Similarly, let M2 decide L2.
Construct M to decide L = L1 U L2.
M on input x:

1. ...

Claim: M halts on all input.

Claim: If x is in L, M accepts x.

Claim: If x is not in L, M rejects x.

Closure Property: Union (solution)
* If L1 and L2 are decidable, then L1 U L2 is decidable.

L1 is decidable => M1 decide L1. Similarly, let M2 decide L2.
Construct M to decide L = L1 U L2.
M on input x:

1. Runs M1 on x. Since M1 is a decider, M1 must halt on all input.
2. If M1 accepts x, M accepts x. Otherwise, continue.
3. Runs M2 on x. Since M2 is a decider, M2 must halt on all input.
4. If M2 accepts x, M accepts x. Otherwise, M rejects x.

Claim: M halts on all input. (Proof: by construction of M)
Claim: If x is in L, M accepts x. (Proof: x in L => x in L1 or x in L2.

If x in L1, M1 accepts x. So M accepts x (in line 2).
If x is not in L1 then x must be in L2, then M2 accepts x and so does M (in line 4).)

Claim: If x is not in L, M rejects x. (Proof: x is not in L => x not in L1 and x not in L2.
[Use similar argument as above.] M will continue in line 2 and reject in line 4.)

* If L1 and L2 are enumerable, then L1 U L2 is enumerable.
* If L1 and L2 are recognizable, then L1 U L2 is recognizable.

Closure Property: Union

Make use of 2-tape TMs to run two TMs in parallel.

Exercise: Complete construction and proof.

Closure Properties
* Decidable languages are closed under intersection.
* Recognizable languages are closed under intersection.
* Enumerable languages are closed under intersection.

* Recognizable languages are closed under concatenation.
* Decidable languages are closed under concatenation.
* Enumerable languages are closed under concatenation.

* Decidable languages are closed under complement.
* Recognizable languages are not (proof requires newer techniques, later).

A-DFA
A-DFA = { <B,w> : B is a DFA that accepts string w}

Thm: A-DFA is decidable.
Proof:
Level-1 :- Proof by constructing a TM that decides A-DFA.
Level-2 :- Construct 3-tape TM M-A-DFA that on input w does following:
 M-A-DFA (<B, w>) :
 0. M rejects if input is not of form <encoding of DFA, input on DFA alph.
 1. M copies w to second tape and writes q0 of DFA on 3rd tape.
 2. M start simulating DFA with second head on first symbol of input.
 3. In each step, M scans its input tape (B portion) and finds the next
 state and updates it on 3rd tape. It moves the second head to right.
 4. When second head reaches blank, M checks if third tape contains a
 state which is listed in the accept states of DFA. If yes, M accepts
 otherwise M rejects.

A-NFA = { <B,w> : NFA B accepts w }

Regular Languages are Decidable
Suppose L is a regular language. Therefore, there exists a DFA to recognize L.
Construct ML to decide L using DFA.

E-DFA = { <A> : A is DFA and L(A)={} }
M-E-DFA (<A>) :

0. Input validation.
1. ...

NON-E-DFA = { <DFA A> : L(A)={} }
Is NON-E-DFA recognizable? Decidable?

ALL-DFA = { <A> : A is a DFA and L(A) = everything }
M-ALL-DFA (<A>) :

0. Input validation.
1. ...

Proof of correctness:
LEVEL-1: We will prove that
 (a) M-ALL-DFA always halts
 (b) If M-ALL-DFA accepts w then w is in ALL-DFA
 (c) If w is in ALL-DFA then M-ALL-DFA accepts w

EQ-DFA = { <C,D> :
C,D are DFAs & L(C)=L(D) }

M-EQ-DFA (<C,D>) :
0. Input validation.
1. ...

Another proof for: E-DFA = {<A> : L(A)={} }
M(<A>):

1. Construct DFA E which does not accept anything.
2. Run M-EQ-DFA(<A,E>).
3. M accepts iff M-EQ-DFA accepts.

Incorrect proof.
Why ?!

