CSE322 Theory of Computation Lec 19

If L is recidable then L is (reacossively) enemerable.
3.13 L is decidable iff L is string-order enumerable. short to long, among samelength,
$<=$ Level 1: Suppose Enumerates L in the string order. use dictionary case el Lis finite. Lis regular, and hence decidable.
We will construct decider D to decide L.
$D(x)$:

1. D runs \mathbb{E}
2. Der every w that E outputs,
3. if is $\omega=x$, D goes to gaccept
4... if $\omega>x$, Dodo to grey.

What if x comes after
the last string in L ?

$$
E: w_{1} w_{2} \cdots w_{k} x
$$

Claim: If x is in $L, D(x)$ halts and accepts.
Claim: If x is not in $L, D(x)$ halts and rejects.
ardenng
3.13 L is decidable iff L is string-order enumerable.
\Rightarrow Level 1: Suppose M decides L.
We will construct enumerator E which enumerates L in the string ord.
$E()$: // enumerator ignores input
1.... for all strings win the string adder:
2... $\quad \operatorname{run} M(\pm 0)$ Il decider
3. If M accepts ω : E outputs ω

Claim: If $x \in L, E$ would output x ?
Claim:- If E outputs $x, x \in L$.
Claim:- All outputs of E are in the string order.

Closure Property: Union

* If L1 and L2 are decidable, then L1 $\cup L 2$ is decidable.

Level 1: Proof by construction. MI decides $L 1, M 2$ decides $L 2$. Construct M to
Level 2: $L 1$ is decidable $\Rightarrow M 1$ decide $L 1$. Similarly, let M2 decide L2. decide $L_{1} U L_{2}$

Construct M to decide $L=L 1 \cup L 2$.
M (on input x)

1. ... Rum $M_{1}(x)$
2. If M, accepts x, M goes to Lace.
3. Else, sun $M_{2}(x)$.
7) If M_{2} accepts x, got face. Do what M_{2} does. \longrightarrow If M_{2} rejects x_{1} gotoqrej.

$$
L_{1} \cup L_{2}
$$

Claim: If x is in L, M accepts x.

Claim: If x is not in L, M rejects x.

Closure Property: Union (solution)

* If L1 and $L 2$ are decidable, then $L 1 \cup L 2$ is decidable.
$L 1$ is decidable $\Rightarrow M 1$ decide L1. Similarly, let M2 decide L2.
Construct M to decide $L=L 1 \cup L 2$.
M on input x :

1. Runs M1 on x. Since M1 is a decider, M1 must halt on all input.
2. If M1 accepts x, M accepts x. Otherwise, continue.
3. Runs $M 2$ on x. Since $M 2$ is a decider, $M 2$ must halt on all input.
4. If M2 accepts x, M accepts x. Otherwise, M rejects x.

Claim: M halts on all input. (Proof: by construction of M)
Claim: If x is in L, M accepts x. (Proof: x in $L \Rightarrow x$ in $L 1$ or x in $L 2$.
If x in L1, M1 accepts x. So M accepts x (in line 2).
If x is not in $L 1$ then x must be in $L 2$, then $M 2$ accepts x and so does M (in line 4).)
Claim: If x is not in L, M rejects x. (Proof: x is not in $L \Rightarrow x$ not in $L 1$ and x not in L2.
[Use similar argument as above.] M will continue in line 2 and reject in line 4.)

Closure Property: Union

* If L1 and L2 are enumerable, then L1 $\cup L 2$ is enumerable.
* If L1 and L2 are recognizable, then L1 $\cup L 2$ is recognizable.

Make use of 2-tape TMs to run two TMs in parallel.

Exercise: Complete construction and proof.
M_{1} recognizes 4

$$
M_{2} . \quad L 2
$$

M to recognize $L_{1} \cup L 2$

$$
M(x): \text { NNDTM }
$$

Non-deterministically, run $H_{1}(x)$ or $M_{2}(x)$ and do as theydo.

$$
M(x): / / D T M
$$

Rum both $M_{1}(x)$ \& $M_{2}(x)$, one step at a time.
whenever any ore accepts, Mass accepts.

Closure Properties

* Decidable languages are closed under intersection.
* Recognizable languages are closed under intersection.
* Enumerable languages are closed under intersection.
* Recognizable languages are closed under concatenation.
* Decidable languages are closed under concatenation.
* Enumerable languages are closed under concatenation.
* Decidable languages are closed under complement.
* Recognizable languages are not (proof requires newer techniques, later).

$A-D F A=\{\langle B, w\rangle: B$ is a $D F A$ that accepts string $w\}$
The: $A-D F A$ is decidable.
Proof:
Level-1:- Proof by constructing a $T M$ that decides $A-D F A$.
Level-2 :- Construct 3-tape TM M-A-DFA that on input w does following:
$M-A-D F A(\langle B, w\rangle)$:

0. M rejects if input is not of form <encoding of DFA, input on DFA alph.
1. M copies w to second tape and writes q0 of DFA on Ord tape.
2. M start simulating DFA with second head on first symbol of input.
3. In each step, M scans its input tape (B portion) and finds the next state and updates it on $3 r d$ tape. If moves the second head to right.
4. When second head reaches blank, M checks if third tape contains a state which is listed in the accept states of DFA. If yes, M accepts otherwise M rejects.

$$
\begin{aligned}
& A-N F A=\{\langle B, w\rangle: N F A B \text { accepts } w\} \\
& M-A-N P A(\langle B, \omega\rangle):
\end{aligned}
$$

0....

1. Use the subset method to consmect a DFA Dst: $L(D)=L(B)$. 11 D accepts w ifs
2. $\operatorname{Rum} M-A=D F A(\langle D, w\rangle)$ B accepts ω where $M-A-D F A$ is the decider for $A \rightarrow D F A$.

Regular Languages are Decidable
Suppose L is a regular language. Therefore, there exists a $D F A$ to recognize L. Construct ML to decide L using DFA.D

$E-D F A=\{\langle A\rangle: A$ is $D F A$ and $L(A)=\{ \}\}$
M-E-DFA ($\langle\Delta\rangle$):
0. Input varidation. 1.... cheor

$$
N O N-E-D F A=\{\langle D F A A\rangle: L(A)=\{ \}\}
$$

Rumo decider for $E \rightarrow-$ FFA aftés antitching
Is NON-E-DFA recognizable? Decidable? accept \& reject atatates,
$A L L-D F A=\{\langle A\rangle: A$ is a $D F A$ and $L(A)=$ everything $\}$
M-ALL-DFA ($\langle A\rangle)$:
0. Input validation.
1.... Construct A^{\prime} which is a copy of A \& final atones are swapped. $/ L\left(A^{\prime}\right)=\overline{L(A)}$.

$$
L(A)=z^{-i} i f f \quad L\left(A^{\prime}\right)=\phi
$$

2. Rum M-E-DPA(A), 2 do what it does.

Proof of correctness:
LEVEL-1: We will prove that
(a) M-ALL-DFA always halts
(b) If M-ALL-DFA accepts w then w is in ALL-DFA
(c) If w is in ALL-DFA then M-ALL-DFA accepts w

$$
E Q-D F A=\{\langle C, D\rangle:
$$

$L(C)=L(D)$ if $L(A)=\phi$
C, D are $D F A s \& L(C)=L(D)\}$
$M-E Q-D F A(\langle C, D\rangle):$
0. Input validation.
1.... Conobuct DFA ASV,

$$
\begin{aligned}
L(A) & =(L(C)-L(D)) \cup(L(D)-L(C)) \\
& =(L(C) \cap L(D)) \cup(L(D) \cap L(C))
\end{aligned}
$$

2. Ruin $M-E \rightarrow$ $\operatorname{FA}(A)$.

Another proof for: $E-D F A=\{\langle A\rangle: L(A)=\{ \}\}$
$M(\langle A\rangle)$:

1. Construct DFA E which does not accept anything. Incorrect proof.
2. Run $M-E Q-D F A(\langle A, E\rangle)$. Why ?!
3. M accepts iff $M-E Q-D F A$ accepts.
