
CSE322 Theory of Computation (L18)

DTM accepts x if DTM goes to accept state on input x
DTM rejects x if DTM goes to reject state on input x
DTM recognizes L if DTM accepts (goes to qaccept) x iff x is in L
=> for strings not in L, may reject or may loop
DTM decides L if DTM accepts x if x is in L and rejects (goes to qrej) x if x is not in L
=> DTM never loops

NDTM accepts x if some non-deterministic choice leads to accept state on input x
NDTM recognizes L if NDTM(x) goes to qaccept for some choice iff x is in L
=> for strings not in L, may reject or may loop on every choice
NDTM decides L if ...
 NDTM(x) halts on all choices
 for x in L, NDTM(x) goes to qacc for some choice
 for x not in L, NDTM(x) goes to qrej for all choices

DTM halts

L is recognizable

L is decidable
L is recognizable if there is a DTM that recognizes L.
Q: L is (DTM)-recognizable iff L is NDTM-recognizable?
Q: L is (DTM)-decidable iff L is NDTM-decidable?

L is recognizable if there is a DTM that recognizes L.

If L is decided (recognized) by a DTM
then L is decided (recognized) by an NDTM.

Proof by construction: Let L be recognized by NDTM N. We will construct DTM
D to recognize L.
Use D = DTM simulator done in class for N. Now, we will prove that D recognizes L,
i.e., D accepts only strings in L and all strings in L.

(a) Show that if x in L (i.e., N accepts x), then D accepts x.
(b) Show that if D accepts x, then x in L (i.e., L accepts x).
Both (a) and (b) follow from the property of the DTM simulator.

If L is recognized by an NDTM, there L is recognized by a DTM.

If L is decided by an NDTM, there L is decided by a DTM.
Similar proof as above.

Decidable =
Recursive

Recognizable =
Recursively enumerable

L is recognizable if there is a DTM or NDTM whose language is L.
L is decidable if there is a DTM that always halts and whose language is L.
Lemma: L is decidable if there is an NDTM that always halts on any non-deterministic
 branch and whose language is L.

TM for { a b a : 0 <= i < j }
0. Right-shift the input
1. Make a left-to-right pass and check that input string is of the form
a*baa*. If not, reject. Otherwise, put head back at left end.
2. Move right and put head on first non-blank symbol.
3. if input symbol is b: scan right to find any a. If a is found, accept.
4. if input symbol is a: replace it with blank, move right (reading past a's),
 read b, move right (reading past blanks), read a, replace it with blank,
 move left and put head back at left end.

Trace the TM on aabaaaa

Trace the TM on aba

Universal TM
<M> : Encoding of a TM M, in some suitable alphabet
<M,w> : Encoding of a TM M, in some suitable alphabet
Design a DTM U s.t.
 U(x):
 if x is not of the form <M,w>: reject

Run M on w and do what M does

Write an algorithm/TM to produce a list of ALL TMs
(maybe, with duplicates).

