
CSE322 Theory of Computation (L14)

Today
PDA to CFG

L = { w.rev(w) }

ID of a PDA :
(state, remaining input, stack contents)
(q , aw , sZ) |- (q', w, tZ)
 means d(q,a,s) = {(q',t), ...}
Notation: |-* denotes multiple moves

(q0,1111,e) |-* (qa, e, e)

(q1, w1 , S1) |-

(q2, w2 , S2) |-

...

(qk, wk , Sk) |-

(q1, w1.y , S1) |-

(q2, w2.y , S2) |-

...

(qk, wk.y , Sk) |-

(q1, w1 , S1) |-

(q2, w2, S2) |-

...

(qk, wk , Sk) |-

Consider a sequence of transitions: (p, w, S) |-* (q, y, T).

(q1, w1 , $) |-

(q2, w2, ...$) |-

...

(qk, wk , ...$) |-

stack always has $,
never empty

Can we remove $?
What if no step can both
pop & push?

PDA to CFG
Construct G from PDA: PDA accets w iff G generates w.
Modify PDA:
* One accepting state qa.
* Stack is empty at beginning and at end.
* Each transition either pushes or pops but not both.

(p', x) in d(p, a, e) &
(q, e) in d(q', b, x) for some x

Take w in L. First move must be push and last move must be pop.
Either w = w1.w2 and for some intermediate r,

(q0, w1w2, e) |-* (r, w2, e) |-* (qa, e, e)

PDA to CFG
Lemma: A(p,q) =>* w w s.t. (p,w,e) |-* (q,e,e)

L = { w | (q0, w, e) |-* (qa, e, e) } { w derived from A(q0,qa) }

or, w = a.w'.b and (q0, aw'b, e) |- (p', w'b, c) |-* (q', b, c) |- (qa, e, e)

Idea

If A(p,q) =>* x, then (p,x,e) |-* (q,e,e).

Proof by induction on k=length of derivation of x from A(p,q).
Base case: k=1. A(p,p) => e. (p,e,e) |-* (p,e,e).
Ind. Hyp.: Stmt true for k=1...n
Ind. Step: To prove stmt for k=n+1.
A(p,q) => ... => ... => ... n+1 times => x

Case analysis on the first step of derivation

Apq => Apr Arq =>* x
So, Apr =>* x1 and Arq =>* x2 & x=x1 x2

By IH,
(p,x1,e) |-* (r,e,e) & (r,x2,e) |-* (q,e,e).
By the previous lemma,
(p,x1 x2, e) |-* (r,x2,e).
Combining,
(p, x1 x2, e) |-* (q, e, e).

If (p,x,e) |-* (q,e,e), then A(p,q) =>* x.
Induction on k = number of transitions.
Base case: k=0, so p=q, x=e.
Ind Hyp.: True for k=0...n
Ind Step: (p,x,e) |- ... |- ... (n+1) times |- (q,e,e)

Case analysis

Stack is empty only at beginning and at end Stack is empty in the middle too

First symbol pushed (c) must be popped at last.
(p, a x' b, e) |- (p', x' b, c) |- *

 (q', b, c) |- (q, e, e)
(p', c) in d(p, a, e) & (q,e) in d(q',b,c) =>
G has rule: A(p,q) => a A(p'q') b

Since (p', x'b, c) |-* (q', b, c) without emptying
stack, none of its transitions can depend on the
c on the stack. So, the following is also a valid
transition: (p', x', e) |-* (q', e, e).

By IH, A(p'q') =>* x'.
Therefore, A(p,q) => a A(p',q') b => a x' b.

CFG to PDA

Ex. Generate PDA for
S -> aTb | b, T -> Ta | e

Construct PDA from G: G generates w iff PDA accepts w.
PDA: Non-deterministically guess the derivation/parse tree

Show that ...
{w over {a,b,c} : #a(w) = #b(w) = #c(w) } is not CFL

L = above language
L1 = a*b*c*
Prove that L intersect L1 is not CFL.
Then prove that L is not CFL.

Closure under NOPREFIX
NOP(L) = { w in L s.t. no proper prefix of w is in L }

What is NOP(L1) = ?
What is NOP(L2) = ?
What is NOP(L1 U L2) = ?
Prove that L1 is CFL, L2 is CFL and L is CFL.
Q: How to prove NOP(L) is NOT CFL?
Let L3 = a* b* cc c*
What is L4 = NOP(L) intersect L3?
How to prove that L4 is not CFL?

Prove L = { w=a* b* : #(a,w) != #(b,w) and #(a,w) != 2 #(b,w) } is CFL.

Divide L = L1 U L2 U L3 and show that each is CFL.

Exercise: Show that L1 = { w=a*b* : #(a,w) < #(b,w) } is CFL.
Exercise: Show that L2 = { w=a*b* : #(a,w) > 2 #(b,w) } is CFL.

Show that L3 = { w=a*b* : #(b,w) < #(a,w) < 2 #(b,w) }
Let i = #(a,w), j=#(b,w)
Show that i=k+2h and j=k+h.

