CSE322 Theory of Computation (L13)

Today

Pumping Lemma for PDA

Pumping lemma: Motivation
ba"aaba"

Q: Is mab in L?
Q: What is the maximum number of leaf nodes of a tree with height h where b is the maximum number of children a node can have?
bal $a \Rightarrow$ node can have? \quad a $A B a \Rightarrow b a \Rightarrow a a b a$ baaabaa
$A \rightarrow a B a B C C \Rightarrow l$ length $=6$ height: \# edges
b: maximum length of any rule to farthest leaf

If height $<=h_{1}$ length of string $s=b^{h}$
If length of string $\rangle=b^{h}+1$, height $\rangle=h+1$
\Rightarrow Long strings cannot have short parse trees.

Pumping Lemma

$$
p=b^{v}+1
$$

For $C F L L$, any string $\sin L$ of large length $(|s|\rangle=Q)^{?} . \quad p=b^{v+1} \geqslant b^{v}+1$ can be divided into $s=u v x y z$ s.t.

* uxz, uvxyz, uvvxyyz, uvvvxyyyz, ... are in $L \Rightarrow$ Does not say how to divide * at least one of v and y is non-empty \longrightarrow ow $T 3$ generates w but with fewer nodes $\star|v x y|<=p$

A is first repeated variable on the longest path from bottom:
relate |vxy| with height of A

$|v y|>0$

$$
A \rightarrow B
$$

$$
A \rightarrow B \quad B \rightarrow A
$$

Shodent bane for $S \Rightarrow|v y|>0$ bots v, y cannot

$$
S \Rightarrow \cdots . \quad a a A b b a \Rightarrow a a b b b a \Rightarrow \text { La } A b b a
$$

$$
\Rightarrow
$$

$$
L=\left\{a^{i} b^{j} c^{k}: 0\langle=i\langle=j\langle=k\} \text { show } L \text { is not }\right.
$$

Let L be CFL and p be the pumping length. $s=p_{a}^{p} b{ }_{b}^{p} c=u v x y z$.

pumpdowr ray!
pump gown把

Let L be CFL and p be the pumping length.

$$
S^{\prime}=\left.\left.\omega^{\prime \prime \prime}| |_{0 . \delta}^{\left.\right|_{1} ^{\prime}} 0^{\omega^{\prime}}\right|^{p}\right|^{p}=\omega^{\prime} w^{\prime}
$$

$$
w=0^{p} 1^{p}
$$

Need to argue that vxy pumped strings are not in L * urvxyyz would not be form $w^{\prime} . w^{\prime}$ Use: $|v x y|<=p$
Show: If vxy in first half, then after pumping vxy once, second half starts with 1

Show: If ray is in the middle pumping down doesn't work. $0^{p} 1^{a} / 0_{1}^{b} 1^{p^{\text {pw }} \quad \text { either } a<p} \quad b<p$ $\neq \omega^{\prime} \omega^{\prime}$ for some ω^{\prime}
$L=\{s t r i n g$ over a, b, c st. \#a<\#b \& \#a<\#c\} ~

Let L be CFL and p be the pumping length.

Case 1. ry contains a
Then ry cannot contain c.

Case 2. ry does not contain a Then ry must contain either b or c.

Closure properties

$\quad L 1$	$G 2$
$G 1$	$G 2$
$S 1 \rightarrow A B$	$S_{2}^{2} \rightarrow a A b \mid e$
$S 1 \rightarrow B C$	$A \rightarrow a A b A \mid a$
$A \rightarrow B A \mid a$	
$B \rightarrow C C \mid b$	
$C \rightarrow A B \mid c$	

$S \xrightarrow[A B]{ }$
$S 2 \rightarrow a \Delta b \mid e$
$A \rightarrow a A b A \mid a$
$A \rightarrow B A l a$
$B \rightarrow C C \mid b$

$$
c \rightarrow A B \mid c
$$

Exercise
Prove these using PAs.

$$
S \Rightarrow S S 1 \Rightarrow S 1 \Rightarrow
$$

Union: L(G1) $\cup L(G 2)$

$$
\delta \rightarrow \delta 1 \mid \delta 2
$$

$$
G 1 \cdots G_{2} \cdots
$$

Concatenation: L(G1).L(G2)

$$
S \rightarrow S 1 \cdot S_{2}
$$

Kleene Star: L(G1)*

$$
S \rightarrow \varepsilon \mid S_{S} S_{1}
$$

Reversal of $L(G 2)$

$$
S \rightarrow b A_{a} \mid \varepsilon
$$

$$
A \rightarrow A b A a \mid a
$$

$$
\left\{a^{n} b^{n}: n \geqslant 0\right\}
$$

Closure under intersection $L=\left\{a^{n} b^{n} c^{n}: n \geqslant 0\right\}$ nor $C P L$.
$A_{n} B_{n} C_{n}=\left\{a^{n} b^{n} c^{n}: n>=0\right\}$ is not a CFL (prove using Pumping Lemma).
Write $A_{n} B_{n} C_{n}$ as intersection of two CFLs.
Closure under complement
Suppose CFLs are closed under complement. Now, arrive at a contradiction.
Li: $C 8 L \rightarrow \overline{L 1 U} \overline{L 2}=L 1 \cap L 2$
LZA.CFL

$$
\left.\begin{array}{l}
L 2=\left\{a^{m} b^{n} c^{n}: n \geqslant 0\right. \\
m \geqslant 0\} \\
\rightarrow c F L
\end{array}\right\} \begin{aligned}
& \rightarrow \left\lvert\, \cap L=\left\{\begin{array}{l}
a^{n} b^{n} c^{n}: n \geqslant 0 .
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& L_{I}=\left\{a^{n} b^{n} c^{m}: n \geqslant 0\right. \\
& m \geqslant 03 \\
& =\left\{\begin{array}{l}
\left\{a^{n} b^{n}: m>\delta\right\} \cdot\{\underbrace{m}_{c F L} \tilde{F}^{m} \geqslant 0\}
\end{array}\right.
\end{aligned}
$$

CFLs and Intersection operation
CFL not closed under intersection!

CFL AND REG is CFL. $\delta(\ldots)$

Stack

Show that $\left.\left\{a^{n} b^{n} c^{n}: n\right\rangle=0\right\}$ is not a CFL using PL.

Show that ...
$\{w$ over $\{a, b, c\}: \# a(w)=\# b(w)=\# c(w)\}$ is not $C F L$
$L=$ above language

$$
L 1=a^{\star} b^{\star} c^{\star}
$$

Prove that L intersect $L 1$ is not CFL.
Then prove that L is not CFL.

