CSE322 Theory of Computation (L11)

Does not appear good for clustering, scheduling, optimization, numerical ananlysis, program (syntax, semantics) validation, ...

PDA
push down antomato

Automata + Data structure

CFL context-free languge

NPDA $\sqrt{3}$ DPDA
Non-deterministic Pushdown Automata (yw)

Construct PDA for $L=\{x \# y: x!=\operatorname{rev}(y)\}$
Exercise $\{x \neq y: x \neq y\}\{x \neq y: x=y\}$

1. Stage -1: Keep reading all symbols until \# is seen. While reading, non-det. go to 2 .
2. Non-deterministically mark one symbol and push it into the stack. Go to 3.

3. Push all remaining symbols into the stack until \# is seen.
4. When \# is seen move to stage -2 af 4.

5. Stage -2: Keep popping all symbols and reading input symbols until a marked symbol is seen on stack.
6. When marked symbol is seen, check if it matches the current input symbol.
7. If the current input symbol and marked symbol on stack do not match, accept. Ole go to a trap state.

Context-free Grammar
start variable $A \rightarrow 0 A 1$
substitution rules $A \rightarrow B$
I productions $B \rightarrow \#$
rule: variable \rightarrow string over

$$
\text { terminal }=\{0,1, \#\}
$$

$$
\text { variable }=\{A, B\}
$$

$$
A \rightarrow B \rightarrow \#
$$

$$
A \rightarrow O A 1 \rightarrow O O A \perp 1 \rightarrow O O O A \perp 11
$$ $\rightarrow 000$ B111

Context Free Language (CFL) : Strings generated by $C F$ grammar $000 \$ 111$
Ex: Language of above grammar?
$L=\left\{w: w\right.$ is of the form $\left.O^{n} \neq 1^{n}, n \geqslant 0\right\}$

$$
\underset{A \rightarrow B}{A \rightarrow O A 1}\} A \rightarrow O A 1 \mid B
$$

CF
$A \rightarrow O A 1 \quad(A, O A 1)$
$A C F G$ is (V, Σ, R, S)
\checkmark set of variables
\langle EXR $\rangle \rightarrow\langle$ EXPR $\rangle+\langle$ TERM $\rangle \mid\langle$ TERM \rangle
\sum set of terminal symbols
$\langle\mathrm{TERM}\rangle \rightarrow\langle\mathrm{TERM}\rangle \times\langle\mathrm{FACTOR}\rangle \mid\langle\mathrm{FACTOR}\rangle$
R : as a tuple
$\langle F A C T O R\rangle \rightarrow(\langle E X P R\rangle) \mid a \quad V=\{\langle E X P R\rangle,\langle T E R M\rangle,\langle$ AFAR $\}$ $\Sigma_{S}=\{+, x,(), a$,
$S \in V$: starting variable
Derivation:
Is "(axa)+a" present in language of the above?
u, v, w : string over variables \& terminals
A : variable

- $u \Delta v \Rightarrow u w v(\underline{u} A v$ yields $u w v$) if $A \rightarrow w$ rule exists $\circ u \Rightarrow \star v(\underline{u}$ derives v) if

$$
u=v_{1} \text { or }
$$

$$
u \Rightarrow v 1 \Rightarrow v 2 \Rightarrow \ldots \Rightarrow v \text { for some } v 1, v 2, \ldots
$$

Language $(G)=\{w$ over terminals $\mid S \Rightarrow \star w\}$

Ex. Write a grammar to generate balanced string of brackets, braces,
ω case: startsand ends of $(,) \rightarrow \infty=(\Gamma)$
$\{\leq\} \rightarrow \omega^{2}\{\square\}$

$$
s \rightarrow(s)|\{s\}| \varepsilon
$$

Ex. Write a grammar to generate palindromes.

$$
L(G)=\left\{\omega: \omega=\omega^{\text {roo }}\right\} \text { over }\{0,1\} \quad S \rightarrow \varepsilon|0| 1 \mid 0 \text { SO |AS }
$$ x is in $L(G)$ iff

(a) $x=\varepsilon$, or
(b) $x=0$, or
(c) $x=1$, or
$s \rightarrow 011110$
(d) $x=0 y 0$ or $1 y 1$ where $y=y^{\text {rev }}$

CFG for non-palindrome $\{\omega: \omega \neq w(r e v)\}$ over $\{0,1\}$
w is not a palindrome. w can be of types:
(1) w starts and ends with the same symbol
(2) w starts and ends with different symbol smallest string :01 110

$$
S \longrightarrow O S O|1 S 1| O A 1 \mid 1 A 0
$$

$A($ any string $) \rightarrow O A|1 A| \varepsilon$

