
CSE322 Theory of Computation(L10)

Recap of last lecture Today

Regular Expressions II

Thm: Regular languages are equivalent to DFA

Regex is not as powerful as Java
Regex is okay for verifying patterns ...
like C variable names, URLs ... (lexical an.)
Can Regex verify syntax of C programs?

Kleene's Theorem
Regular language: Languages of Regexes

Thm: If L is accepted by an NFA,
then L is decribed by a regex.

Corollary:
Regular expression = DFA = NFA

(Proof uses GNFA -- coming up)

Generalized NFA (GNFA)
* arcs between states are labeled with regex
* input read by multiple alphabets at a time

Convention (easy to satisfy)
1. Unique start state with no incoming <-

2. Unique accept state with no outgoing ->

3. -> between every other pair, incl. self-loops

Is abababab accepted?

GNFA Formalization
GNFA is described by (Q, , , q0, qf)
* set of states Q
* set of input alphabets
* start state q0
* final state qf
* transition function
(there is a Regex between every source and dest. states)

GNFA accepts s if s = s1 ... sk and there exists a seq. of states r0 ... rk
1. si
2. r0 = q0
3. rk = qf
4. for all i=1...k si

Proof of theorem:
1. DFA/NFA -> GNFA
2. GNFA -> Reduced GNFA
3. Reduced GNFA -> Regex

DFA/NFA -> GNFA

1. Add unique start and end states:

Given FA N, L = L(N)...

Reduce GNFA
2. Remove any (non-terminal) state by modifying
 regexes on affected arcs, in an iterative manner

Remove q2
---------->
Do this for EVERY q1, q3 s.t. q1 -> q2 -> q3
Do this for EVERY q1 s.t. q1 -> q2 -> q1

while (#states > 2):
q <- some intermediate state
// remove q
for every ordered pair (qi, qj):

// qi qj need not be distinct
// qi cannot be final state
// qj cannot be start state
create regex for qi -> qj by bypassing q

Remove 1
-------->

G = <Q,S,d,q0,qf> -> G' = <Q' ,S, d', q0' , qf' > in which qm is removed

Prove that L(G) = L(G')
=> If G accepts w then G' accepts w.

<= If G' accepts w then G accepts w.

GNFA -> Regex
3. Stop when 2 terminal states are left.
 Return regex on arc between them.

Lemma: Suppose R is the final regex left.
Then, L(N) = L(R).

Identifying C comments
Design NFA to identify valid multiline comments?

/* I am a simple but
 * three-line/3-line
 * *long* **multi-line**
 * comment
 */

What is a lexer?
See http://www.cs.man.ac.uk/~pjj/cs211/flexdoc.html

Homomorphism
Consider alphabets X and Y.
Let f() be a homomorphism from strings over X to strings over Y.
f(xy) = f(x)f(y) for any strings x, y over X.

Show that,
1. f(e) = e
If f(e) = y over Y, then y = f(e) = f(ee) = f(e)f(e) = yy.

concatenation respecting function

2. If L over X is regular, then f(L) is regular.

How to prove this fact?

4. If L over Y is regular,
 then { x over X : f(x) in L } is regular.

= L'

