CSE322 Theory of Computation(L10)

Kleene's Theorem
Regular language: Languages of Regexes
Tum: Regular languages are equivalent to $D F A$
Regex is not as powerful as Java
Regex is okay for verifying patterns...
like C variable names, URLs ... (lexical an.)
Can Regex verify syntax of C programs?

Tum: If L is accepted by an NFA, then L is decribed by a regex.
(Proof Yes ©NFA - - coring wp)

Corollary:
Regular expression $=D F A=N F A$

Generalized NFA (GNFA)
t arcs between states are labeled with regex t input read by multiple alphabets at a time

$8(2,56)^{2}=3$

Is ablablablab|saccepted?

$$
\text { s } \rightarrow 223223 @
$$

1. Unique start state with no incoming <-
2. Unique accept state with no outgoing \rightarrow $q, q^{\prime} \quad q \longrightarrow q^{\prime}$ except when $q=q_{f}$, or $q^{\prime}=q a$
3. \rightarrow between every other pair, incl. self-loops

GNFA Formalization
GNFA is described by ($Q, \Sigma, \delta, q 0, q f$)

* set of states Q
* set of input alphabets \sum
(a) \xrightarrow{a} ?
$q \xrightarrow{20} q^{\prime}$
* start state $q 0<Q$
* final state of $\in Q$
* transition function $\delta:\left(Q-\left\{q_{\}}\right\} \times Q-\left\{a_{0}\right\}\right) \rightarrow \mathbb{R}$: sctofall possible regular expression
(there is a Regex between every source and dest. states)
GNFA accepts $s \in E_{1}^{*} f s=s 1 \ldots$ sk and there exists a seq. of states $r 0 \ldots r k$

1. $s i \in \Sigma^{*}$

2. $r 0=q 0$
3. $r k=q f$
4. for all $i=1 \ldots k$ si $\in L\left(\delta\left(x_{i, 1}, r_{i}\right)\right) \quad s_{i}$ matches $\delta\left(r_{0,} r_{1}\right)$

Proof of theorem:

1. DFA/NFA \rightarrow GNFA
 2. GNFA \rightarrow Reduced GNFA

3. Reduced GNFA \rightarrow Regex

DFANFA \rightarrow GNFA
Given $F A N, L=L(N)$...
if Daccepts w, then Naccepts ω.

1. Add unique start and end states:

$D F A \quad D=\langle Q, \Sigma, \delta, 90, F\rangle$

$$
G N F A N=\left\langle Q \cup\{s\} \cup\{a\}, \sum, \delta^{\prime}, s, a\right\rangle
$$

$$
\delta^{\prime}(p, q)=\left\{\begin{array}{ll}
a_{h} \text { if unique } & \delta(p, a)=q
\end{array} \text { if } p, q \in Q\right.
$$

$$
\begin{aligned}
& \delta^{\prime}(1,2)=a \\
& \delta^{\prime}(5,2)=\phi
\end{aligned}
$$

Extend to other states
To prove: $L(N)=L(D)$

Reduce GNFA

2. Remove any (non-terminal) state by modifying regexes on affected arcs, in an iterative manner
(aI)

Remove qq
(qI) $R_{1} \cup R_{2}\left(R_{4}\right)^{*} R_{3}$

Do this for EVERY q1, q3 s.t. q1 $\rightarrow q^{2} \rightarrow q^{3}$
Do this for EVERY q1 s.t. q1 $\rightarrow q 2 \rightarrow q 1$
while (\#states > 2):
q-- some intermediate state
// remove q
for every ordered pair (qi, qi):
// qi qi need not be distinct

$R \phi=\phi$
$\phi \cup \phi=\phi$
// qi cannot be final state
// oj cannot be start state
create regex for $q i \rightarrow q$ qu bypassing q

Remove 1
$G=\langle Q, S, d, q 0, q f\rangle \quad \rightarrow \quad G^{\prime}=\left\langle Q^{\prime} \quad, S, d^{\prime}, q O_{=q p, ~ q f^{\prime}}^{\prime}=q_{f}\right\rangle$ in which $q m$ is removed

$$
=Q-\left\{q_{m}\right\}
$$

Prove that $L(G)=L\left(G^{\prime}\right)$
\Rightarrow If G accepts w then G^{\prime} accepts w.
Read from sipper
$<=$ If G^{\prime} accepts w then G accepts w.

GNFA \rightarrow Regex
3. Stop when 2 terminal states are left. Return regex on arc between them.

Lemma: Suppose R is the final regex left. Then, $L(N)=L(R)$.

Identifying C comments
Design NFA to identify valid multiline comments?
/* I am a simple but

* three-line/3-line
* *long* **multi-liné**
* comment
*/
What is a lexer?
See http://www.cs.man.ac.uk/ $/ \sim_{\text {Dj }} /$ cs $211 /$ flexdoc.html

Homomorphism

$$
x=\{a, b\} \quad Y=\{1,0,2\}
$$

$$
f(a)=102
$$

$f(b)=222$ concatenation respecting function
Consider alphabets X and Y.

$$
f(a a b b)=102102222222
$$

Let $f()$ be a homomorphism from strings over X to strings over Y. $f(x y)=f(x) f(y)$ for any strings x, y over X.
Show that,

1. $f(e)=e$

If $f(e)=y$ over Y, then $y=f(e)=f(e e)=f(e) f(e)=y y$.
2. If L over X is regular, then $f(L)$ is regular.

$$
\begin{aligned}
& R=(O \cup 1)^{*} 001(O \cup 1)^{*}, f(0)=a b, f(1)=b c \\
& \therefore \quad f(R)=(a b \cup b c)^{*} a b a b b c(a b \cup b c)^{*}=R^{\prime} \text { is a regex }
\end{aligned}
$$

How to prove this fact?

$$
L(R 1)=f(L)
$$

Tut.
4. If L over Y is regular, then $\{x$ over $X: f(x)$ in $L\}$ is regular.
$x \in f^{-1}(L)$ iff $f(x) \in L$

$$
q 0 \xrightarrow[{q \xrightarrow{a} \xrightarrow{f(x)}}]{ } \quad \begin{aligned}
& x=\{a, b\} \\
& y=\{0,1\} \\
& \\
& f(a)=01 \\
& f(b)=10
\end{aligned}
$$

