CSE322 Theory of Computation (L8)

Today

Review
$\omega: \exists w^{\prime} \in L$ st. $\operatorname{swith}\left(w^{\prime}\right)=\omega$
Define Switch 3(L) $=\left\{\mathrm{w}\right.$ such that L contains $w^{\prime} \&$
D accepts L
w is a version of w^{\prime} in which every alternate 1 is switched to zero,

$$
\longrightarrow=\left\langle Q \sum, \delta, q 0, F\right\rangle
$$

Show that regular languages are closed under Switch.
starting from the first 1$\}$.
o,
switch $(w)=$ every 1 ar odd index/
in switched to 0

$$
\begin{array}{cc}
w^{\prime}=010 & 011 \ldots \Rightarrow 001000 \\
1 & 111 \Rightarrow 01000
\end{array}
$$

$$
\begin{aligned}
& L=\{D, 1,11,011,10101, \\
& \operatorname{switch}(L)=\{0,0,01,001, \cdots\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { any } \nabla \text { in } \omega \Rightarrow 0 \text { or }\left\{\begin{array}{l}
1 \text { in } w^{\prime} \quad 111 \Rightarrow 010 \\
\text { only when that } 1 \text { is in some ode f }
\end{array}\right. \\
& \text { stored in a position in } w^{\prime}
\end{aligned}
$$

stored in a state

States $=\mathrm{Q} \times\{O D D, E V E N\} / / E V E N / O D D$ keeps track of the position of 1 in w^{\prime}

* State is (q,ODD) means that the last 1 was an odd 1 in w',
so it must have been switched to 0 , and the current state in D on w^{\prime} is q
* State is ($\mathrm{q}, \mathrm{EVEN}$) means that the last 1 was an even 1 in w^{\prime},
so it must have been retained as 1 , and the current state in D on w^{\prime} is q
Starting state $=(\mathrm{q0}, \mathrm{EVEN}) / /$ no ones has been seen until now
$(q, O D D) \quad(q, E V E N)$ the position of the last 1 of the guessed W^{\prime}

Final states $=\mathrm{F} \times\{$ ODD, EVEN $\}$

$$
\delta 1((q, o d d), 1)=
$$

Transition function:

* di $((\mathrm{q}, \mathrm{ODD}), 1)=\{(\mathrm{d}(\mathrm{q}, 1), \mathrm{EVEN})\} / /$ last 1 was an odd one in w^{\prime}, so it must have been switched to 0 ; now another 1 is observed, thus move according to D
* $\mathrm{d} 1((\mathrm{q}, \mathrm{EVEN}), 1)=\{ \} / /$ last 1 was even one in w so it must have been retained as 1 in w ; now, another 1 is observed in w - however, it is not possible have another 1 in w^{\prime} retained as 1 , so go to the NULL-state.
* $\mathrm{d} 1((\mathrm{q}, \mathrm{ODD}), 0)=\{(\mathrm{d}(\mathrm{q}, 0), \mathrm{ODD})\} / /$ last 1 was even one in w ' so it must have been retained as 1 in w ; now a 0 is observed in whee which could not have come from a 1 in w (since that 1 would be an even 1 which would not be flipped) hence, that 0 in w must have come from a 0 in w^{\prime}
* $\mathrm{d} 1((\mathrm{q}, \mathrm{EVEN}), 0)=\{(\mathrm{d}(\mathrm{q}, 0), \mathrm{ODD}),(\mathrm{d}(\mathrm{q}, 1)$, EVEN $)\} / /$ last 1 was an odd one in w^{\prime}, so it must have been switched to 0 ; now a 0 is observed, guess both options:
0 in w^{\prime} is retained as 0 in w , and 1 in w^{\prime} (it would be even one) is switched to 0 in w
Pumping Lemme gave
You (prove laragnage to be non-regalar).
choose $\omega \in L|\omega\rangle \geqslant p$ shoo $x y^{k} z \notin L$

Prove non-regularity of ... $\operatorname{On}_{n} 1 n=\left\{0^{n} b^{n}: n \geqslant 0\right\}$
$P A L=\left\{w: \omega \in\{0,1\}^{*}\right.$
$P A L=\{w: w=\operatorname{rev}(w)\} \quad B A L=\{$ balanced strings using (and) $\}$
pumping length

$$
\begin{aligned}
& \text { pumpinglength } p \\
& w=10^{p-2} \frac{1}{p-\operatorname{PAL}} \quad \frac{0 \cdots}{y} \circ 1
\end{aligned}
$$

Case: $y=10^{p-2} 1 \rightarrow$
$\Sigma=\{0,1\}$
Case: $y=10^{t}$

$$
\begin{array}{ll}
\text { Case: } y=10^{p-2} 1 \rightarrow & \text { WW }=\{w w \\
\text { Case: } y=10^{t} & \\
\begin{array}{ll}
\text { Case: } y=0^{t} 1 \\
y^{t} & x=10^{a}, z=0^{b} 1, x y^{0} z=10^{a} 0^{b} 1 \in P A L
\end{array}
\end{array}
$$

(a) $L=\left\{a^{n} b a^{2 n^{\prime 2}}: n \geqslant 0\right\}$
(b) $L=\left\{a^{i} b^{j}: i=j\right.$ or $\left.2 i=j\right\}$
$w^{\prime}=1^{p-k} \circ 1^{p} \notin P A L$
$(p-k+1)$ Symbol in $w^{\prime}=0$
(c) $(p-k+t)$ th" " \quad rev(ω) $=1$
(c) $\left[\frac{p-k \pi}{}\{x: x\right.$ begins with a non null string of the form $w w\}$

$$
L=\left\{a^{n} b a^{2 n}: n \geqslant 0\right\} \quad 1=a^{i} b^{p} b a^{2 p} \quad y=a^{t} \quad x z=a^{p-t} b a^{2 p} \quad \text { either } i \text { is a multiple of } j 0
$$

$L=\left\{a^{i} b^{j}\right.$: eithe i is a multiple of jor j is a multiple?

$$
\text { Toy: } w=a^{2 p} b^{2 p}
$$

$$
W_{2 p, 2 b}=a^{p} b^{b} \rightarrow \text { wot possible }|x y| \leqslant p \Rightarrow y=a^{t} \quad 1 \leqslant t \leqslant p \text {, }
$$

$$
\begin{aligned}
& B A L=\{w: \quad w \text { is a balanced string }\} \quad(((()))()(())())(())
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
w=\left(^{p}\right) C^{p} \notin B A L \\
p u a y) \in B A L
\end{array} \\
& \therefore y=C^{k} \\
& x y^{0 z}=\left({ }^{p-k}\right)^{p} \notin B A L \\
& \text { \# }(C, \omega)=p-k \\
& \text { \# }(\nu, \omega)=p
\end{aligned}
$$

