CSE322 Theory of Computation (L7)

Recap of last lecture	Today
Qunstions of Tutt = Exam standard	
(eepect youn os sove in 15-20 mins.)	Closure Properties
Quis met thave	

$$
\text { Reverse }(L)=\left\{\begin{array}{l}
\operatorname{rev}(\omega): \omega \in L\} \\
\omega
\end{array}\right.
$$

Closure under Reverse()
Suppose D accepts L. Construct N that accepts $R L=\operatorname{Reverse}(L)$.

$D=\langle Q, \Sigma, \delta, q 0, F\rangle$ (q) reverse of $N=\left\langle Q 1, \Sigma, \delta 1, q_{01}, F 1\right\rangle$

Prove that: $\hat{\delta}(q 0, w) \in F$ iff
Daccepts ω

$$
a_{s i n} \rightarrow
$$

$$
\begin{array}{ll}
\left\langle Q 1, \sum, \delta 1, q_{01}, F 1\right\rangle \tag{5}\\
Q 1=Q \cup\{q s\} \quad F 1=\{q 0\} & q \xrightarrow{q} i \\
q_{01}=q s & \delta 1(q s, \varepsilon)=F, \delta 1\left(q \pm q_{s}, a\right)=\{r: \delta(r a)=q\}
\end{array}
$$

$\widehat{\delta 1}(q 01, \operatorname{rev}(w)) \cap F 1 \neq \phi$

$$
\begin{aligned}
& \hat{\delta}_{1}\left(q_{s}, w R\right) \ni q 0 \\
& \hat{\delta}_{1}\left(q_{s}, w R\right)=\hat{\delta}_{1}\left(q_{s}, w R \cdot \varepsilon\right)= \\
& q 0 \in \bigcup_{r \in \delta_{1}(q s, \varepsilon)}^{\hat{\delta}_{1}(r, \omega R)} \Leftrightarrow \exists r \in \delta_{F 1(q, \varepsilon)}^{F} q 0 \in \hat{\delta}_{1}(r, \omega R)
\end{aligned}
$$

Prove that: $\hat{\delta}(q 0, w) \in F$ iff $\exists r \in F$ st $q 0 \in \hat{\delta}_{1}(r, \omega R)$
$q_{0} \sim q_{f}$
$\operatorname{con}^{\omega R} 9^{N}$
\Rightarrow Let $\begin{gathered}\hat{\delta} \\ =q_{f} \\ \\ \end{gathered}(q, \omega) \in F$, Show that $q_{0} \in \hat{\delta}_{1}\left(q_{f}(\omega R)\right.$. follows from definition $\delta 1$ induction. \Leftarrow Let $r \in F \operatorname{sr}, q 0 \in \hat{\delta}_{1}(r, \omega R)$. Show that $\hat{\delta}(q 0, \omega)=r$

Closure under Half($) L=\{1,100,100,1100,101001,0100101,-3\}$ H af $(L)=\left\{1^{k}, 11,<, 010 \ldots\right\}$
$\operatorname{Half}(L)=\{x$: there is some y in L s.f. $|x|=|y|$ and $x y$ is in $L\}$

$$
\begin{aligned}
& \quad D=\langle Q, \Sigma, \delta, q 0, F\rangle \\
& N=\left\langle Q 1=Q \times Q \cup\{q s\}, \sum, \delta 1, q s, F 1=\{(q, q): q \in Q\}\right\rangle \\
& \delta 1(q s, \varepsilon)=\left\{\left(q 0, q_{f}\right): q_{f} \in F\right\}, \delta 1(q s, a)=\varnothing \\
&\delta 1\left(\left(q_{1}, q_{2}\right), a\right)=\{\underbrace{\delta(q 1, a)}, q^{\prime}): \exists b, \delta\left(q^{\prime}, b\right)=q^{2}\}
\end{aligned}
$$

$D: q^{0} \sim \sim_{x} \sim_{y}$ product autowata
(1) Which if? Guess
(2) Which state should be a final stale?
Both ervin the assur stoles.
(3) Ind DFA should be simulated in reverse.

The: Fy $\hat{\delta}(q 0, x y) \in F \quad$ iff $\hat{\delta}_{1}(q, x) \cap F 1 \neq \phi$
(4) What should bey?

Er any $a_{f f} F$
$x \in \operatorname{Half}(L)$
for any x, y

accepts x
Guess.

(10) $\sim_{x}>$ (7.i.i. $\sim_{x} q_{f} \epsilon^{F}$

Closure under SameHalf($) L=\{1,00,1010,1001, \cdots\}$
Samettalf $(L)=\{0,10, \cdots\}$
SameHalf(L) $=\{x: x x$ is in $L\}$

$$
D=\langle Q, \Sigma, \delta, 90, F\rangle
$$

1st ratf sive end half

$$
\delta_{1}\left(q_{s}, \varepsilon\right)=\left\{(q 0, r, r r)^{\text {reos }}: r \in Q\right\}
$$

(1) Simulate D on $x \rightarrow$ Ist half
(2) Parallely simulate is on x for the seend $\delta_{1}\left(q_{s}, a\right)=\phi$ half \rightarrow hor to clvose the midtle state
(3) Product $\triangle P$ qA ioss

Claim:
when $\frac{18 t}{}$ half entas at the quessati

Thm:
$\hat{\delta}(q 0, x x) \in F \quad$ iff $\hat{\delta}_{1}(q s, x) \cap F 1 \neq \phi$ NFAaccepts x

Pumping Lemma
If L is a regular language, then...
Does not say the value of p
There exists a positive p s.t.
For all strings w in L of length p or more, pumpable strings
There exists a partitioning $\omega=x y z$, where

1. $x z$ is in L, $x y z$ is in L, byz is in L, xyyyz is in L, xyyyyz is in $L_{\text {, }}$ xyyyyyz is in $L_{1} \ldots$
2. $|x y|<=p$
3. y is not empty string ($x, 2$ could be empty)

* PL does not say what is the pumpable subseq.

Proof of Pumping Lemma
Proof by construction.
L is recognized by DFA M with s states. Set $p=s$. w is a 'long' string ie., $|w|>=s$.
states after each symbol

Pumping Lemma
If L is a regular language, then... Does not say the value of p
There exists a positive p s.t.
For all strings w in L of length p or more, pumpable strings
There exists a partitioning $\omega=x y z$, where

1. $x z$ is in $L_{,} x y z$ is in L_{1} byz is in L_{1} xyyyz is in L_{1} xyyyyz is in $L_{\text {, }}$ xyyyyyz is in $L_{1} \ldots$
(or, all NOT in L)
2. $|x y|<=p$
3. y is not empty string ($x, 2$ could be empty)

* PL does not say what is the pumpable subseq.

Proof of Non-regular Languages

Given L, how to prove that L is not regular ... That is, L CANNOT be accepted by a DFA?
Proof by contradiction: Assume that L is regular, P Lapheses to L.
for amy pumpable w, PL cains must hold.
Proof: Use Pumping Lemma to construct a pumpable w in L (or w not in L) s.t. w can be pumped (up/down) to get w^{\prime} NOT in L (or w^{\prime} in L).
 Arviveat a contratictionby shoring that some pumped version of w trent agree with w. (T My all possible partitioning.)
$L=\left\{0^{n} 1^{n}|n\rangle=0\right\}$ is not regular

Proof by contradiction, using Pumping Lemma.
$P L$ guarantees p s.t. for every string w of length $\rangle=p_{1}$ there is a non-empty subsequence which can be pumped.
$Q:$ Can we use $w=0 \ldots$ (p/2 times) ...01...(p/2 times) ...1

