CSE322 Theory of Computation (L6)

Closure

Regular language is closed under operation "o": if for all regular $L, o(L)$ is regular.

Regular language is closed under operation "0": if for all regular $L 1$ and $L 2, o(L 1, L 2)$ is regular.
if A is reguarn B io regular, then $A \cup B$ is regular.
Are rationals closed under division?
Are real numbers closed under square-root?
$L=\{$ Starting with 0$\} \cup\{$ ending with 1$\}$

Closure under Union
If A and B are regular, then $A \cup B$ is regular.
Proof by constructing a product automaton.

$$
M 1=\langle Q 1, \Sigma, \delta 1, q 1, F 1\rangle \longrightarrow M 2=\langle Q 2, \mathcal{L}, \delta 2, q 2, F 2\rangle
$$

Closure under Intersection If A and B are regular, then $A \cap B$ is regular. Proof by constructing a product automaton.

$$
M 1=\langle Q 1, \Sigma, \delta 1, q 1, F 1\rangle \quad M 2=\langle Q 2, \Sigma, \delta 2, q 2, F 2\rangle
$$

M accepts x ifs MI I accepts x and M2 accepts x

$$
\begin{aligned}
& Q \\
& \Sigma \\
& \delta \\
& q \\
& F=F_{1} \times F_{2}
\end{aligned}
$$

Closure under Complement

$$
L=\{w \mid w \notin L\}
$$

$M, L=\{\#(1, \omega)$ is odd $\}$
$N \quad L=\{\#(1, \omega)$ is even $\}$
N accepts x iff M doesint accepts x
\rightarrow copy of M with final states reversed

Dolsn't reject 101. Think!

Closure under Union (using NFA)

$$
\begin{aligned}
& N 1=\langle Q 1, \Sigma 1, \delta 1, q 1, F 1\rangle \\
& N 2=\langle Q 2, \Sigma 2, \delta 2, q 2, F 2\rangle
\end{aligned}
$$

$M=\langle Q, \Sigma, \delta, q, F\rangle$ acephing LIULZ
$L=w$ starts with 0 and has odd length, or starts with 1 and has even length Prove that L is regular.

Closure under Intersection (alt.)
Proof using other closure properties.

$$
L_{1} \cap L 2=\overline{\overline{L 1} \sqrt{L 2}}
$$

$$
\angle 1 \cap L 2 \subseteq L I U L 2
$$

$$
\Sigma^{*} \quad \rightarrow @^{0,14}
$$

is regular.
w -contains exactly $2 A$ and at least $2 B$
Closure under Kleene star \& Kleane Phis

$$
\begin{aligned}
& L^{*}=\bigcup_{k \geqslant 0} L^{(k)}=\left\{\begin{array}{l}
\left.w \mid w=w_{1} \cdot w_{2} \cdots w_{j} \text { where } w_{i} \in L \quad \forall i=1 \cdots j\right\} \\
\text { for some } j \geqslant 0
\end{array}\right\} \\
& L^{+}=\bigcup_{k \geqslant 1} L^{(k)}=L \cdot L^{*}
\end{aligned}
$$

N accepts L
N^{\prime} accepts L^{*}

Closure under Concatenation

$$
\begin{aligned}
& N 1=\langle Q 1, \Sigma 1, \delta 1, q 1, F 1\rangle \\
& N 2=\langle Q 2, \Sigma 2, \delta 2, q 2, F 2\rangle \\
& M=\langle Q, \Sigma, \delta, q, F\rangle \\
& Q \\
& \sum \\
& \delta \\
& q \\
& F
\end{aligned}
$$

Take DFA D. Let $X=\left\{q\right.$: there exists some $x^{\in Z^{*}} \operatorname{such}$ that $\left.d^{\prime}(q 0, x)=q\right\}$
Construct $M=\langle Q \cup\{s\}, S, d 1, s, F\rangle$

$$
q D \sim \vec{x} q
$$

where $d 1(q, a)=\{d(q, a)\} \& d 1(s, e)=X$
Show that: if M accepts x then there exists y s.t. D accepts $y x$.

If ω is accepted by M then $\exists x$ sn. xu is aceppas by D
\& inceversa.

$$
L(M)=\{\omega \mid \exists x \quad \text { s } \omega, x \omega \in L(D)\}
$$

Exercise: Show that if D accepts $y x$ then M accepts x. given accepted by M

$$
\equiv \hat{\delta}_{1}(s, \omega) \cap F \neq 0
$$

To show

$$
\begin{gathered}
q \sim \underset{r}{y} q_{1} \tilde{r}_{y} q_{z} \\
\hat{\delta}(\hat{\delta}(q, x), y)=\hat{\delta}(q, x y) \\
\text { tue for DPA } \\
N F A:-\hat{\delta}(q, x y)=\bigcup_{r \in \hat{\delta}(q, x)} \hat{z}(x, y)
\end{gathered}
$$

$$
\begin{aligned}
& \{(q, x), y)=\hat{\delta}(q, x y) \quad \hat{\delta}_{1}(s, w)=\left(F^{\prime}\right) \\
& \text { true fo DPA } \\
& \hat{\delta}_{1}(s, w)=\hat{\delta}_{1}(s, s w)
\end{aligned}
$$

Given a regular language L, show that $H L$ is a regular language. $H L=\{x: x x$ is in $L\}$

On any input string w, N would try to simulate D on ww. N does so by first guessing r - the state D would be at if given input w (N uses non-determinism to guess r). Then N parallely runs D on w starting at D 's starting state, and running D on w starting at r. It may be helpful to let N "remember" r in its state after guessing it.

Let $D F A D=\langle Q, S, q 0, F\rangle$ accept L.
Construct NFA $N=\langle Q 1, S, d 1, q 01, F 1\rangle$ where
$Q 1=Q \times Q \times Q \cup\{s\}$ wheres is a new state not in Q,

$$
\begin{aligned}
& q 01=s, \\
& F 1=\{(r, r, t): r \text { in } Q, t \text { in } F\} \\
& d 1(s, e)=\{(q 0, r, r): r \text { in } Q\} \\
& d 1(s, \text { symbol } a)=\{ \} / / \text { no-op } \\
& d 1((r 1, r 2, t), e)=\{ \} / / \text { no-op }(\text { since } D F A D \text { has no e-moves }) \\
& d 1((r 1, r 2, t), a)=\{(d(r 1, a), r 2, d(t, a))\}
\end{aligned}
$$

Claim: If D accepts $u=w w$ then N accepts u.

Claim: If N accepts w then D accepts ww.

