CSE322 Theory of Computation (L5)
Recap of last lecture
Today
NFA to DFA
NFA proof of correctness

DFA to NFA
Given $D F A M=\langle Q D, \Sigma D, \delta D, q O D, F D\rangle$ construct equiv. NFA $N=\left\langle Q N, \sum N, \delta N, q O N, F N\right\rangle$

$N F A$ to DFA (subset method)
(First, assume there is no e-transition)

$(90) \xrightarrow{0} 90,91) \longrightarrow 90$

NFA to DFA (subset method)

(not showing unreachable)

	0	1
包	\emptyset	\emptyset
$\rightarrow\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
$\left\{q_{1}\right\}$	\emptyset	$\left\{q_{2}\right\}$
$*\left\{q_{2}\right\}$	\emptyset	\emptyset
$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$
$*\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
$*\left\{q_{1}, q_{2}\right\}$	\emptyset	$\left\{q_{2}\right\}$
$*\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$

$\varepsilon-N F A$ to DFA (subset meth.) Given E-NFA N
construct equivalent DFAM
-Closure $E(q)=\left\{q^{\prime} \mid q \xrightarrow{\text { or more r rules }} q^{\prime}\right\}$
construct equivalent DFAM
-Closure $E(q)=\left\{q^{\prime} \mid q \sim\right.$ or more ε-rules
$\left.q^{\prime}\right\}$
construct equivalent DFAM
E-Closure $E(q)=\left\{q^{\prime} \mid q \xrightarrow{ }\right.$ or more ε-rules
$\left.q^{\prime}\right\}$

$\delta N F A$	a	b	ε
$\rightarrow 1^{*}$	\varnothing	2	3
2	2,3	3	ϕ
3	1	ϕ	\varnothing

$D F A:(33) \xrightarrow{a} E(1)=\{1,3\}$ $a b a b_{07} \varepsilon^{2} 98^{2} 90$ (200)
$E(\{q 1, q 2, \ldots, q k\})=$?

$\delta^{D}\left(a^{\alpha} \leq 2 N, a \in \Sigma \Sigma\right)=\bigcup_{a \in \alpha^{2}} E(\delta N(a, a))$

$$
\begin{align*}
& E(1)=\{1,3\} \\
& E(2)=\{2\} \\
& E(3)=\{3\} \\
& E(1,3)=\{1,3\} \\
& E(2,3)=\{2,3\} \tag{7}\\
& E(1,2)=\{1,2,3\} \\
& E(1,2,3)= \\
& D=\underset{\substack{\text { same }}}{\left\langle\chi^{\prime} D\right.}, \mathcal{V}^{j} \\
& E(\})=\{ \}
\end{align*}
$$

For NFA, $\hat{\delta}(q, \omega)=$ set of states reached from state q after reading string ω
For $\varepsilon-N F A, \hat{\delta}(q, \omega)=$ like above, but also allowing ε-transitions

Cross-check

$$
\begin{aligned}
& \begin{array}{l}
\hat{\hat{\delta}(\text { start }, \varepsilon)} \rightarrow \text { accept } \\
\hat{\delta}(\text { start }, a) \rightarrow \neg
\end{array} \\
& \hat{\delta}(\text { start, baaa...a) }) \uparrow \\
& \hat{\delta}(\text { start, ba } a \cdots b a) \\
& \begin{array}{l}
\hat{\delta}(\text { start }, b) \rightarrow \text { not } \\
\hat{\delta}(\text { start, ba } a \cdots b)
\end{array}
\end{aligned}
$$

$\varepsilon-N F A$ to DFA (subset meth.) Given $\varepsilon-N F A N$
construct equivalent DFAM
E-Closure
0 or more ε-nules

$$
E(1)=\{1,3\} \quad E(2)=\{2\} \quad E(3)=\{3\} \quad E(\phi)=\phi
$$

IFA Atates:
$\},\{1\},\{2\},\{3\}$,
$\{1,2\},\{1,3\},\{2,3\}$,
$\{1,2,3\}$
$\{2\} \rightarrow$ set of sates of NPA \rightarrow a state of DFA

$\delta N F A$	a	b	ε
$\rightarrow 1^{*}$	\varnothing	2	3
2	2,3	3	\varnothing
3	1	ϕ	\varnothing

$\delta_{D F A}$	a	
$F,(3)$	$E(\phi)=\varnothing$	$b(\phi)=\phi$
$* 1$	$E(\phi)=\phi$	$E(\phi)=\phi$
2	$E(2,3)=2,3$	$E(3)=3$
$(3,3)$	$E(1)=1,3$	$E(\phi)=\phi$
$* 1,2$	$E(2,3)=2,3$	$E(2,3)=2,3$
$* 1,3$	$E(1)=1,3$	$E(2)=2$
2,3	$E(1,2,3)=1,2,3$	$E(3)=3$
$* 1,2,3$	$E(1,2,3)=1,23$	$E(2,3)=2,3$

NFA to DFA (subset method)

$$
\begin{aligned}
& N_{1}=\left\langle Q, \Sigma, \delta_{0}^{N}, q 0^{N}, F_{N}\right\rangle \Rightarrow D=\left\langle P(Q), \sum_{0}, \delta_{0}^{D}, E\left(\left\{q 0^{N}\right\}\right),\left\{Q^{\prime} \subseteq Q: Q^{\prime} \cap f_{N}\right.\right. \\
& \forall Q^{\prime} \leq Q, \quad \delta_{D}^{D}\left(Q^{\prime} \leq Q, a\right)=V E\left(\delta_{N}(q, a)\right) \\
& \text { Cain:- } L(N)=L(D) \text {. } \\
& \forall a \in \Sigma \\
& Q \in Q^{\prime}
\end{aligned}
$$

Ignore ε-NFA (for simplicity)

Proof of $L(N)=L(D)$: Define using extended transition functions
$\omega \in L(N)$ if $\omega \in L(D)$
$\omega \in L(D) \leftrightarrow$
$\omega \in L(N) \longleftrightarrow$

Need to prove a Lemma:
Lemma: $\forall \omega, \forall \underline{\forall q \in Q_{N}}, \hat{\delta}_{D}(\underbrace{\{q\}}_{\text {a state }}, \omega)=\hat{\delta}_{N}(\underbrace{q, \omega)}_{\text {a slate of }} \underset{\text { subset of } Q}{\operatorname{set} \text { of states of } N F A}$

Induction of length of w. of DFA

$$
\begin{aligned}
& \text { prostate of NFA } \\
& \hat{\delta}_{N}(q, \varepsilon)=\{q\}
\end{aligned}
$$

Base case: $|\omega|=0 \Rightarrow \omega=\varepsilon$

$$
\begin{aligned}
& \text { LAS: } \hat{\delta}_{D}(\{q\}, \varepsilon)=\{q\} \\
& \text { RHO: } \hat{\delta}_{N}(q, \varepsilon)=\{q\}
\end{aligned}
$$

$$
\hat{\delta}_{N}(q, x \cdot a)
$$

$$
=\bigcup_{r \in \hat{\delta}(q, x)} \delta(r a)
$$

\therefore base case holds
ISS.
state of D FA

$$
\begin{aligned}
& \hat{\delta}_{D}(q, \varepsilon)=q \\
& \hat{\delta}_{D}(q, x a)
\end{aligned}
$$

$$
\begin{aligned}
& R H S: \hat{\delta}_{N}(q, x a)=\bigcup_{r \in \hat{\delta}(q, x)} \delta(r, a) \mid{ }^{\text {H }} \text { Show match. } \\
& =\delta(\hat{\delta}(9, x), \hat{a}) \\
& \delta^{D}\left(Q^{\prime} \leq Q, a\right)=\bigcup_{Q \in Q^{\prime}} \delta_{N}(q, a) \\
& \delta_{D}\left(\hat{\delta}_{N}(q, x), a\right) \\
& =\bigcup_{q \in \hat{\delta}_{N}(q, x)} \delta_{N}(q, a) L \text { used deft of } \delta_{D} \\
& q \in \hat{\delta}_{N}(q, x)
\end{aligned}
$$

Example
L = sequences of $O s$ of length either divisible by 2 or
 divisible by 3 (or both)

$$
W_{1}=\{\omega: \omega \text { has } \cdots \cdots\}
$$

$\rightarrow 90$

$$
D F A=N F A=\varepsilon-N F A
$$

- regular language
languages that are arseefted by any DFA/NPA/ ε-NRA
REGULAR = class of regular languages
Class/complesity class $=$ set of languages $S=\{L: \exists D F A D$ SK. $L=L(D)\}$

