Tuples Est $(a, b)=\{a,\{a, b\}\}$
CSE322 Theory of Computation (L2)

Recap of last lecture
Strings - reverse ($2 y$)
proporites $=$ reverse (y). reverse ce($($)
Exit: diu. of reverse

$$
-\mid \text { swerve }(x-y)|=|x|+|y|
$$

prefix e of length t
Suffix of length s

Today
Finite automaton (DFA) abba a $\in L$

Language $L=$ set of save slings

Define language L over the alphabet $\{\mathcal{L}\{a, b\}$ in the following manner:
 bbexa, adxbo, abba, 3 aaa,.
Prove: For any x in $L,|x|$ is divisible by 4 . aa aa,
$a, \& L$
Level 1: Proof by induction on the length of x. claim in incorrect.
Base case: The fact holds for $|x|=0$, since the empty string is in L and has zero length which is divisible by 4.
I.H.: For any x in L of length $<=n,|x|$ is divisible by 4. indanceroft.

Started with x that already satifions (H. $y^{\prime}=6 a x a b z^{\prime}=66 \times b b$
I.S.: Take any x in L of length $=n$. Let $y=a a \times a a, z=a b \times b a$, etc. The length of all of these are $|x|+4$. Since 4 divides $|x|, 4$ also divides $|x|+4$. This shows that $|y|$, $|z|$, etc. are divisible by 4. (QED).

IS is supposed to show that ... "For any w in L of larger length, the desired property (4 divides $|w|$) holds."

Define language L over the alphabet $\{a, b\}$ in the following manner: e is in L. If x is in L, then $a x a$ and $b x b$ are in L.

Prove: For any x in $L_{,}|x|$ is even.
Level 1: Proof by induction on the length of x.
Base case: The fact holds for $|x|=0$, since the empty sting is in L and has even length.
I.H.: For any x in L of length $<=n,|x|$ is even. langerlengets \rightarrow IH on andine sting.
I.S.: Take any x in L of length $=n+1$, where $|x|=n+1\rangle=1$.

Since x is not empty, therefore, x must be constructed as either 1. aye a for some y in L, or 2. bib for some 2 in L For case $1,|y|<=n$ and y is in L. By IH, $|y|$ is even. Thus, $|x|=|y|+2$ is also even. Case 2 is similar.

What to do with a language?
Construct a machinelalgorithm to decide membership.

Questions:
Are all languages" solvable"?
Can we say a solvable language is "easier" compared to another one? What is the best way to "solve" a language?

A simple iterative one-pass function

```
                        "x}=y+z"\quadx,y,z\mathrm{ are binary rep.of
                        string
boolean my_func(input) {
    // define few local vars not unbounked data smuchure 
    for i in input{\mp@code{quc}
        switch(i) {
            case ...: { single pass " "|=10+0|" ->True
            case ....:
            case ...: J
            case ....:
        }
    }
    return ... // True or False
}
```



```
        \equivDecision problem
```

(Deterministic) Finite Automata finite state machine DFA

McCulloch, W. S.; Pitts, E. (1943).
"A logical calculus of the ideas imminent in nervous activity"

Rabin, M. O.; Scott, D. (1959).
"Finite automata and their decision problems.".

Legend:
Transition

Formalization of DFA

$$
\operatorname{DFA}(11011)=q_{000} \xrightarrow{ } q_{001} \xrightarrow{1} q_{011}
$$

\square
$\Sigma=\{0,1\}$
Q: set of states
Σ : alphabet
90: starting state
$F \subseteq Q$: set of
final states

$$
\begin{aligned}
& \delta: Q \times \Sigma \rightarrow Q \\
& D F A=\langle Q, \Sigma, \delta(q, 000,0)=q 011)=9000 \\
& \hline, q 0, F\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { Daccepts sift the ard last bit of } \\
& L(D)=\{S: D \text { accepts } \delta\}
\end{aligned}
$$

DFA "accepts".s if if ifs ends up in an accept state after reading 5 . DFA "rejects"s if .D doesn't accept S.
Q: Formally write a DFA to check if even number of 1 b .
? Questions to ask?

* Can DFAs be constructed for every problem?
* For problems that allow DFAs, how to construct a "best" DFA?
* What happens if we allow DFA++?

Language of DFA
$(20)^{s_{1}} r_{1} \xrightarrow{s_{3}} r_{2} \rightarrow \cdots \rightarrow n_{n-1} \rightarrow(a)$
 such that$r_{0}=q_{0}$
(2) $r n \in F$
(3) $\forall i=1 \ldots n, \delta\left(r_{i-1}, s_{i}\right)=r_{i} \quad\left\{\begin{array}{l}\delta\left(r_{0}, s_{1}\right)=r_{1} \\ \delta\left(r_{1}, s_{2}\right)=r_{2}\end{array}\right.$

M recognizes L^{\prime} / L^{\prime} is language of $M / L^{\prime}=L(M)$

$$
L^{\prime}=\{x: M \text { accepts } x\}
$$

(Discrete) Computational Problems
Function problems: output is many-valued
Decision problems: output is Boolean is elemementis has a pooforiy, element is a ye instance of the prover.
Language L = set of strings, from a universe, which $2 C O L O R A B L E \quad$ satisfy some property $L=\{x: D(x)$ returns true $\}$ Ye o $L=\{a b, a b b a, b a, b b a \ldots\} \quad D(x): g_{s} x \in L$?
Language and Decision problems are EQUIVALENT! Decision problem $=$ question of deciding membership of input in some particular language.
SORT $=\left\{\left\langle x_{\cdots} \cdots x_{k} ; i ; y\right\rangle: x_{k} \cdots x_{k}\right.$ are integers, $i \in\{1 \cdots k\}, y \in\left\{x_{1} \cdots x_{k}\right\}$, t y is the it mallet integer in $\left.\left\{x_{1} \cdots x_{k}\right\}\right\}$
(Discrete) Computational Problems
Decision problems: output is Boolean, decide if input has a specified property.

- Does input x represent adj.mat. of a conn. graph?
- Does input x represent two coprime integers? Language and Decision problems are EQUIVALENT!
Input: list LI of integers
Q: Does LI have any duplicate? Yes if duplicate exists. Represent the above problem as membership of L :
$L=\left\{\langle x 1 \ldots x k\rangle: k\right.$ is integer, x_{i} are integers $\&$
there exists distinct i and j s.t. $\left.x_{i}=x_{j}\right\}$

