
Today

Finite automaton (DFA)

Recap of last lecture

CSE322 Theory of Computation (L2)



Define language L over the alphabet {a,b} in the following manner:
e is in L. If x is in L, then axa and bxb are in L.

Prove: For any x in L, |x| is divisible by 4.
Level 1: Proof by induction on the length of x.
Base case: The fact holds for |x|=0, since the empty string is in L
and has zero length which is divisible by 4.
I.H.: For any x in L of length <= / = n, |x| is divisible by 4.
I.S.: Take any x in L of length = n. Let y=aaxaa, z=abxba, etc.
The length of all of these are |x|+4. Since 4 divides |x|, 4 also
divides |x|+4. This shows that |y|, |z|, etc. are divisible by 4. (QED).

IS is supposed to show that ... "For any w in L 
of larger length, the desired property (4 divides |w|) holds."



Define language L over the alphabet {a,b} in the following manner:
e is in L. If x is in L, then axa and bxb are in L.

Prove: For any x in L, |x| is even.
Level 1: Proof by induction on the length of x.
Base case: The fact holds for |x|=0, since the empty stirng is in L
and has even length.
I.H.: For any x in L of length <= n, |x| is even.
I.S.: Take any x in L of length = n+1, where |x| = n+1 >= 1.
Since x is not empty, therefore, x must be constructed as either
1. aya for some y in L, or                2. bzb for some z in L
For case 1, |y| <= n and y is in L. By IH, |y| is even. Thus, |x|=|y|+2
is also even. Case 2 is similar.



Questions:
Are all languages solvable?
Can we say a solvable language is "easier" compared to another one?
What is the best way to "solve" a language?

What to do with a language?
Construct a machine/algorithm to decide membership.



A simple iterative one-pass function
boolean my_func(input) {
    // define few local vars
    for i in input {
        switch(i) {
            case ...:
            case ...:
            case ...:
            case ...:
        }
    }
    return ... // True or False
}



(Deterministic) Finite Automata
McCulloch, W. S.; Pitts, E. (1943).
"A logical calculus of the ideas imminent in nervous activity"

Rabin, M. O.; Scott, D. (1959).
"Finite automata and their decision problems.".



Formalization of DFA

Q: Formally write a DFA to check if even number of 1s.

DFA = <Q, Σ, δ, q0, F>

DFA "accepts" s if its ends up in an accept state after reading s.
DFA "rejects" s if ...



? Questions to ask ?

* Can DFAs be constructed for every problem ?
* For problems that allow DFAs, how to construct a "best" DFA?
* What happens if we allow DFA++ ?



Language of DFA
M accepts string s

M recognizes L' / L' is language of M / L' = L(M)



(Discrete) Computational Problems
Function problems: output is many-valued
Decision problems: output is Boolean
Language L = set of strings, from a universe, which

 satisfy some property

Language and Decision problems are EQUIVALENT!
Decision problem = question of deciding membership of
input in some particular language.



Input: list LI of integers
Q: Does LI have any duplicate? Yes if duplicate exists.
Represent the above problem as membership of L:
L = { <x1 ... xk> : k is integer, xi are integers &

    there exists distinct i and j s.t. xi=xj }

(Discrete) Computational Problems
Decision problems: output is Boolean, decide if
input has a specified property.
- Does input x represent adj.mat. of a conn. graph?
- Does input x represent two coprime integers?
Language and Decision problems are EQUIVALENT!


