CSE322 Theory of Computing

Do not sign-up if you are against the idea of proving anything to anyone

Outline : 3 models of computer

Lec 1

* Formal characterization

You must be really good at writing proofs !!!

Sample Proof sqrt(2) is irrational

Proof by assuming that $\sqrt{a} = a$ for integers $a \leq b$ without any common factor (i.e. $gcd(a_{1b}) = 1$) and reaching a contradiction. Level-2: $a \neq a = 2b \neq b$. Therefore, $a \neq a$ is even. If a was odd, then $a \neq a$ would be odd. Therefore, a must be even. Therefore, a = 2d and $a \neq a = 4d \neq d$. So, $2d \neq d = b \neq b$, i.e., $2 \mid b \neq b$ which means that $b \neq b$ must be even. If b was odd, then $b \neq b$ would be odd. So b must be even. Then a and b would be both divisible by 2 contradicting gcd(a,b)=1. #

AUB = ANB

Ly Proof by showing that (i) $x \in \overline{AUB} \Rightarrow x \in \overline{A\cap B}$ [i.e. $\overline{AUB} \subseteq \overline{A\cap B}$] (ii) $x \in \overline{A\cap B} \Rightarrow x \in \overline{AUB}$ [i.e. $\overline{AUB} \subseteq \overline{A\cap B}$] L2: Explain

Planar graphs are not 3-colorable

Le Proof by showing example of a planar graph which can only be coloured using 4-colours.

Key Terms

Don't say "... can be done ..." "... can be shown ..." "... can be constructed ..."

Alphabet $\sum_{1} = \{a, b, c, d, \dots\}$ finite set of symbols $\sum_{i=1}^{2} \{1, 2, 3, (,], +, * \}$ StringsWords Z={ 1, E} not employ shing _ aab bover ZI of symbols from alphabet sequence 1++* (over 2) shorthand aabb= 26 How to denote empty string? Length of string: |x| can be represented using sets Collections of strings: sets, sequences, tuples $(a,b) \neq (b,a)$ can be represented using sets (a,b,c) = ((a,b),c) $(a,b) = \{\{a\},\{a,b\}\}\}$

A : any not of aymbols
$$B = act d strings$$

 $B^{2} \{ a_{1}, a_{2} : a_{1} \in A_{1} a_{2} \in A \}$ $B^{2} = \{ b_{1} b_{2} : b_{1} \in B_{1} b_{2} \in B \}$
Cartesian Product of Sets, Kleene-star and plus
 $\sum_{i}^{i} = \{ s_{1} s_{2} \dots s_{i} \mid s_{i} \in \Sigma \} = all \text{ acquences of length } i \text{ over } \Sigma$
 $\sum_{i}^{o} = \{ e \}$ $1 - length strings$ $alfabet$
 $\sum_{i}^{*} = \sum_{i}^{o} \cup \sum_{i}^{1} \cup \sum_{i}^{2} \dots$ $\sum_{i}^{+} = \sum_{i}^{a} \cup \sum_{i}^{2} \cup \dots$
Kleene star : all finite length strings $alfabb, ab, e^{2}$ empty string
set of a strings $\{ aabb, ab, e^{2} \}$ empty language)
 $infinite or finite$ $\{ z \}$

(Discrete) Computational Problems

Function problems: output is many-valued Decision problems: output is Boolean Language L = set of strings, from a universe, which satisfy some property

Language and Decision problems are EQUIVALENT! Decision problem = question of deciding membership of input in some particular language. (Discrete) Computational Problems Decision problems: output is Boolean, decide if input has a specified property.

- Does input x represent adj.mat. of a conn. graph?

- Does input x represent two coprime integers? Language and Decision problems are EQUIVALENT! Input: list LI of integers Q: Does LI have any duplicate? Represent the above problem as membership of L:

L = { <x1 ... xk> : k is integer, xi are integers & there exists distinct i and j s.t. xi=xj }

A=
$$\{1,2,1^2\}$$
 \mathcal{E} , $(1,\mathcal{E})$, $(2\mathcal{E})$, $(3,\mathcal{E})$, $(1,(1,\mathcal{E}))$, $(2,(3,\mathcal{E}))$
 T_{S} $(1,2)$ or string?
 2 is not a string 12321
 $(1, (2, (3,(2,(1,\mathcal{E})))))$
A string w over an alphabet A is
 $*$ nothing (called as "empty string", denoted \mathcal{E})
 $*$ or $(4,x)$ where a is a symbol from A
and x is a string 2 $(2,\mathcal{E})$
symbol tube
Length of a string x is denoted $|x|$ and is defined as
 $|x|=0$ if x is the empty string, $|(1, (2, (3,(2,(1,\mathcal{E})))))|$
 $=1+|y|$ if $x=(a,y)$

String concatenation of two strings is denoted x.y and is defined as $(1, (2, \xi)) \cdot (2, (1, \xi))$ x.y=y if x=e, =(a,z,y) if $x=(a_{g}z)$ is a string over A 1221 (1, (212), (21(112))) $=(1)(2,(\varepsilon \cdot (2,(1,\varepsilon)))))$ Can you prove that e.e = e ?~ (2) $=(1,(2,(2,(1,\xi))))$ 3 Can you prove that x.e=e.x=x? Suppose x has length 1. So, x=(a,e). LHS = (a,e).e = (a,e.e) = (a,e) = x = RHSSuppose x has length 2. So, x=(a,y) with |y|=1. LHS = (a,y).e=(a,(y.e))=(a,y)=x=RHSrase above Suppose x has length 3 ...

Prove that x.e=x

Exercise: E.X=X

Level-1: Prove by induction on the length of x. Exercise: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ Level-2: $= x \cdot y \cdot z = x \cdot y \cdot z$ Base case: |x|=0, i.e., x=e. LHS=e.e=e RHS=e which equals LHS. Hence the base case is true.

Induction hypothesis: Assume that χ e=y whenever $|\chi| \leq k$. (general Z) Induction step: Consider any arbitrary x of length k+1. Now, x=(a,y) where a is some symbol and y is some string of length k. LHS=(a,y).e=(a,y.e)= (using IH) (a,y)=x=RHS.