CSE322 Theory of Computing

Do not sign-up if you are against the idea of proving anything to anyone

Formal Models of Computation

What is computation and computer?
What can be computed?
What "cannot" be computed?
What can \& cannot be "efficiently" computed?

Outline: 3 models of computer

Wk 1-4: Finite Automaton
(Pattern matching/Regular expressions)
Wk 5-7: Pushdown Automaton
(Syntax checking of C, Python, etc.)
Wk 8-13: Turing Machine
(Interpret, understand C Python programs)
as capable as C or Python
$\left|h_{2}-h_{1}\right|+\left|h_{3}-h_{2}\right|+\cdots+\left|h_{k}-h_{k}\right|$ divisible by 10 ?
$\left(h_{2}-h_{1}\right),\left(h_{3}-h_{2}\right) \cdots$,

Led 1

* Formal characterization
* Logically correct proofs

Level 1: Technique \qquad

+ Main idea (for partial marks) 20\%
Level 2: Proper complete proof (for full marks) (learn through homeworks \& tutorials)

Sample Proof
sqr+(2) is irrational
(Proof by assuming that $\sqrt{2}=\frac{a}{b}$ for integers $a \& b$ without any common Levelfffactor (i.e. $\operatorname{gcd}(a, b)=1$) and reaching a contradiction.

Level-2: $a t_{a}=2 b t_{b}$. Therefore, $a t_{a}$ is even. If a was odd, then $a t_{a}$ would be odd. Therefore, a must be even. Therefore, $a=2 d$ and $a^{\star} a=4 d^{\star} d$. So, $2 d^{\star} d=b{ }^{\star} b$, i.e., $2 \mid b{ }^{*} b$ which means that $b \star b$ must be even. If b was odd, then $b \star b$ would be odd. So b must be even. Then a and b would be both divisible by 2 contradicting $\operatorname{gcd}(a, b)=1$. \#

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

L_{1} \{Proof by showing that
(i) $x \in \overline{A \cup B} \Rightarrow x \in \bar{A} \cap \bar{B} \quad$ [ie. $\overline{A \cup B} \subseteq \bar{A} \cap \bar{B}]$
(ii) $x \in \bar{A} \cap \bar{B} \Rightarrow x \in \overline{A \cup B}$ [it. $\bar{A} \cap \bar{B} \subseteq \overline{A \cup B}]$

L2: Explain
Planar graphs are not 3-colorable
LH $\left\{\begin{array}{l}\text { Proof by showing example of a planar graph which can only } \\ \text { be colours }\end{array}\right.$ L1 be coloured using 4-colours.

Key Terms
Don't say "... can be done ..."
"... can be shown ..."
"... can be constructed ..."
Alphabet
finite set of symbols

$$
\begin{aligned}
& \sum_{1}=\{a, b, c, d, \ldots\} \\
& \left.\sum_{2}=\{1,2,3, c,\},+, *\right\}
\end{aligned}
$$

Strings/Words $\sum=\{1, \varepsilon\}$ notemadigsting -
sequence of symbols from alphabet $1+t *$ (over Σ_{2}
shorthand $a a b b=a^{2} b^{2}$ How to denote empty string?
Length of string: $|x|$
can be represented using sets
Collections of strings: sets, sequences, tuples
$(a, b) \neq(b, a)$

$$
\begin{array}{ll}
(a, b) \neq(b, a) & \text { can be represented usia } \\
(a, b, c)=((a, b), c) & (a, b)=\{\{a\},\{a, b\}\}
\end{array}
$$

A: any set of symbols
$B=$ at of strings

$$
A^{2}=\left\{a_{1}, a_{2}: a_{1} \in A, a_{2} \in A\right\} \quad B^{2}=\left\{b_{1} b_{2}: b_{1} \in B_{1} b_{2} \in B\right\}
$$

Cartesian Product of Sets, Kleene-star and plus
$\Sigma^{i}=\left\{s_{1} s_{2} \ldots s_{i} \mid s_{i} \in \Sigma\right\}=$ all sequences of length i over $\sum_{j_{i}}$
$\Sigma^{0}=\{\epsilon\} \quad$ i-length strings

$$
\Sigma^{*}=\Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cdots \quad \Sigma^{+}=\sum_{n 0}^{1} \cup \Sigma^{2} \cup \ldots
$$

Kleenestar: all finite length strings all nonempty finite stings
set of finite, strings infinite or finite
$\{a a b b, a b, \epsilon\}$ empty string
$\}$ (empty Language)

$$
\{\varepsilon\}
$$

(Discrete) Computational Problems
Function problems: output is many-valued
Decision problems: output is Boolean
Language L = set of strings, from a universe, which satisfy some property

Language and Decision problems are EQUIVALENT! Decision problem $=$ question of deciding membership of input in some particular language.
(Discrete) Computational Problems
Decision problems: output is Boolean, decide if input has a specified property.

- Does input x represent adj.mat. of a conn. graph?
- Does input x represent two coprime integers? Language and Decision problems are EQUIVALENT!
Input: list LI of integers
Q: Does LI have any duplicate?
Represent the above problem as membership of L : $L=\left\{\langle x \mid \ldots x k\rangle: k\right.$ is integer, x_{i} are integers $\&$ there exists distinct i and j s.t. $\left.x_{i}=x_{j}\right\}$

String $f_{s}(1,2)$ a string?
2 is not assing 12321
A string w over an alphabet A is $(1,(2,(3,(2,(1,8))))$

* nothing (called as "empty string", denoted ε)
t or (a, x) where a is a symbol from A
* nothing else
and x is a string $2(2, \varepsilon)$ symubd tuple
Length of a string x is denoted $|x|$ and is defined as $|x|=0$ if x is the empty string,

$$
\mid(1,(2,(3,(2,(1, \delta)))) \mid
$$ $=1+|y|$ if $x=(a, y)$

$$
=5
$$

String
also $x y$
concatenation of two strings is denoted $x \cdot y$ and is defined as $x \cdot y=y$ if $x=e$,
$\rightarrow=(a, z \cdot y)$ if $x=\binom{, \in A}{a_{n}}$ is ashing over A

$$
(1,(2, \varepsilon)) \cdot(2,(1, \varepsilon))
$$

(1) $(1,(2, \varepsilon) \cdot(2,(1, \varepsilon)))$

1221

Can you prove that ere $=$ e? V
Can you prove that $x . e=e . x=x$?
(2) $=(1,(2,(\varepsilon \cdot(2,(1, \varepsilon))))$
$x \cdot \varepsilon=x$
(3) $=(1,(2,(2,(1, \varepsilon))))$

Suppose x has length 1 . So, $x=(a, e)$.

$$
L H S=\frac{(a, e) \cdot e}{t}=(a, e \cdot e)=(a, e)=x=R H S
$$

Suppose x has length 2 . So, $x=(a, y)$ with $|y|=1$.

$$
L H S=\underbrace{(a, y)}_{x} \cdot e=(a,(y \cdot e))=(a, y)=x=R H S
$$

Suppose x has length $3 \ldots$

Prove that x.e $=x$
Exercise: $\varepsilon \cdot x=x$
Level-1: Prove by induction on the length of x.
Exercise; $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
Level-2:

$$
\Rightarrow \quad=x \cdot y \cdot z=x y z
$$

Base case: $|x|=0$, ie., $x=e$.

$$
\text { LBS }=e \cdot e=e
$$

RUS $=e$ which equals LHS. Hence the base case is true.

Induction hypothesis: Assume that $z \cdot e=y$ whenever $|z|<=k . \quad$ (general z)
Induction step: Consider any arbitrary x of length $k+1$.
Now, $x=(a, y)$ where a is some symbol and y is some string of length k. $L H S=\underset{\substack{\frac{(a, y)}{x}}}{(e)=(a, y \cdot e)} \underset{\substack{a \nmid y \\ d d_{n}}}{ }$.

