
Maximal Labeled-Cliques for

Structural-Functional Communities

Debajyoti Bera

IIIT-Delhi, New Delhi, India 110020,
dbera@iiitd.ac.in

Abstract. Cliques are important building blocks for community struc-
ture in networks representing structural association between entities. Bi-
cliques play a similar role for bipartite networks representing functional
attributes (aka. labels) of entities. We recently proposed a combination
of these structures known as labeled-cliques and designed an algorithm
to identify them. In this work we show how to use these structures to
identify structural-functional communities in networks. We also designed
a few metrics to analyse those communities.

1 Introduction

A clique represents a set of mutually related entities in a network and has played
an important role in community detection and graph clustering [19, 6]. Many
network analysis methods, e.g., clique-percolation method [18] andmaximal clique
centrality [4], rely on the set of maximal cliques of a graph. Therefore, it natural
to ask how to extend these results to networks with additional information.

One way to extend cliques would be to incorporate attributes on the nodes.
The last decade has witnessed a massive increase in the collection of richer net-
work datasets. These datasets not only contain the inter-entity relationships,
but they also contain additional attributes (aka. “labels”) associated with each
entity. For example, social network datasets contain both “structural relation-
ships” (social links between users) and “functional attributes” (interests, likes,
tags, etc.). A recent experimental study concluded that real-life communities
are formed more on the basis of functional attributes of entities (like interests of
users, functions of genes, etc.) rather than their “structural attributes” (those
defined using cliques, cuts, etc.)[25]. Naturally, given both structural and func-
tional information, we expect to find communities that are bonded on both.

The notion of cliques playing the role of seeds in a community structure
ought to be strengthened if we also mandate functional similarity. In this work
we address the question “what is the role of such cliques in discovering cohesive
structural-functional clusters?” We are aware of only two prior solutions for this
problem. Modani et al. [13] resolved the problem of finding “like-minded com-
munities in a social network” by reducing it to that of finding maximal cliques
in an unlabeled graph. Their solution was applying any graph clustering tech-
nique on a subgraph constructed using those maximal cliques. Motivated by a
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similar problem, Wan et al. [24] studied the problem of finding communities
that are strongly related in terms of both node attributes and inter-node rela-
tionships; their solution was a heuristic to avoid generating all maximal cliques.
To the best of our knowledge, the first comprehensive graph-theoretic model for
structural-functional clusters was given by Bera et al. [2] in the form of maximal
cliques of entities with a maximal set of shared labels, aka. MLMCs. In that work
the authors presented the idea, gave an algorithm to find those structures, and
merely suggested a use for finding communities. In this work we outline tools
and methods to employ MLMCs to analyse networks.

Overview of results: We answer two specific questions. First, how to anal-
yse a graph with the help of its MLMCs? In particular, what would be the
statistics of MLMCs in a random graph? And, how far is a network from attain-
ing stability, i.e., when the structural and functional linkages have converged to
the same? To answer these questions, we propose a null model for labeled-graphs,
and then use this null model to define structural-functional divergence.

The communities that we focus in this work are built on cliques; however, a
clique in itself may be too strict a definition for a community. We devise an ex-
tension of the clique-percolation method [18] to labeled-graphs named CBCPM

that incorporates similarity of labels also while constructing communities. For
evaluating the functional cohesion of the communities found by our algorithm,
we devise a new metric ΦC to overcome a shortcoming of the likemindedness
measure proposed earlier [13].

The interest in labeled graphs has recently gained popularity and there are
now quite a few techniques for clustering them [1, 5].However, every clustering
technique emphasises a different notion of community and it appears to be dif-
ficult to decide one clear winner. The relevance of this paper is limited only to
the scenarions where clique-based communities are logical.

2 Background: maximal-labeled cliques

We represent an undirected unweighted graph G by its sets of vertices and edges,
i.e., G = 〈V,E〉. Similarly, we represent an undirected bipartite graph G by
G = 〈U, V,E〉 where U and V represent the two sets of vertices and E represents
the edges going between U and V . Suppose L is a finite discrete set of labels.
A labeled-graph GL = 〈V,E,L, l〉 is defined as a graph whose vertices have an
associated subset of elements chosen from L. For any vertex v, l(v) ⊆ L will be
used to denote the labels of that vertex. A labeled-clique (LC) of GL is defined
to be any subset of vertices V ′ ⊆ V and a subset of labels L′ ⊆ L such that (i)
there is an edge between every pair of vertices in V ′, and (ii) for every v ∈ V ′,
v is labeled using all the labels in L′; we denote it 〈L′, V ′〉.

Our next notion is for unlabeled graphs that can be considered as a join of a
bipartite graph and a general graph. Given a general graph G1 = 〈V,E2〉 and a
bipartite graph G2 = 〈U, V,E1〉, a joined-graph is denoted by 〈U, V,E1, E2〉and
defined as a network on U and V consisting of both sets of edges E1 and E2.
Observe that there are edges among vertices in V (E2) and between vertices in
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Fig. 1. Labeled-graph GL combines G1 and G2. GJ is the joined-graph representation
of GL. (Figure is reproduced from [2] with permission.)

U and V (E1) but none among vertices in U . It was shown by Bera et al. [2]
that a labeled graph can be treated as a joined graph and vice versa.

An MLMC — maximal clique with maximal set of labels, is a labeled-clique
which does not remain an LC if we add any more vertex or label.

All of these concepts can be understood with the help of Figure 1. It shows
a network of entities {A,B,C,D,E} as the general graph G1 and Figure 1b
shows their association with labels from {a, b, c, d, e} as the bipartite graph G2.
Figure 1c shows a labeled-graph GL that combines the information from G1 and
G2 and 〈{a, e}, {A,C}〉 is an LC in GL.

Examples: We present two examples to illustrate how MLMCs can help
in analysing networks. Figure 2 presents the number-vs-size distribution of the
MLMCs of two social-network datasets with tens of thousands of links and la-
belings (representing “user interests”) Not only the number of MLMCs of dif-
ferent sizes follow markedly different distributions, observe that the number of
MLMCs with 5 (or 3 or 4) users are mostly same in the “Last.fm” dataset,
whereas, the same number follows a rapidly decreasing trend in the “The Marker
Cafe” dataset. Our explanation is that users of networks based on user-ratings
(Last.fm) do not necessarily compare and correlate their ratings but users of a
social network (The Marker Cafe) have a natural tendency to bond over shared
interests. Such insights are attractive for targeted advertisement and personal-
ized recommendation.

Table 1 shows some of the patterns we obtained by analysing the MLMCs
of a DBLP dataset of papers published within 1984–2011 in data mining and
related venues [23] — considering only the top venues and authors with 40+
papers in them. We wanted to know which scientists are not collaborators but
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Fig. 2. MLMC profiles of social network datasets.

Table 1. Groups of prolific authors who share (pairwise) a common coauthor but are
not collaborators despite having concurrent papers at common venues

Authors @ Venues

Philip S. Yu, Heikki
Mannila, Tao Li

@
TKDE(2008,2009), Know. Inf. Sys. (2005–
2008,2010,2011), ICDM (2002,2006), SDM(2008–
2010)

Jian Pei, Christos
Faloutsos, Wei Fan

@
ICDM(2005,2006,2008,2010),
SDM(2007,2008,2011), CIKM(2009),
KDD(2004,2006,2008-2011)

could easily be so. For that we constructed a labeled-graph of scientists in which
the labels represented the venues of their papers. We linked two scientists if
they have do not have a joint paper but share a common coauthor — roughly
indicating a shared interest. We discovered 58 MLMCs that consisted of at least
3 authors and at least 10 venues; two such MLMCs are shown in Table 1. All such
MLMCs represent potential collaborative groups that could have been formed
due to familiarity (common coauthors) and concurrency (same venues).

3 Community Detection

Now we discuss how our labeled-cliques can help us find tightly bonded commu-
nities. Our objective is to establish proof-of-concept application of MLMCs; in
reality, each network requires its own bespoke notion of community. The reader
may refer to a recent survey [5] for many such techniques for labeled graphs.

3.1 Null model for labeled-graphs

A common tool in network analysis is a null model that is a random graph with
specific desirable properties. They are used to analyse networks, e.g., distinctness
of network from a randomly formed one, quality of a network clustering [7], etc.
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For example, the well-known notion of network modularity [16] uses a null model
that preserves the expected degree of vertices. We use a null model that preserves
the degree distribution of labeled-graphs. Given a labeled-graph G = 〈V,E,L, l〉,
consider an equivalent joined-graph and denote its bipartite component as GB

and general component as GN . We define null model for the labeled-graph G by
simply joining the null models for GN and GB , which we describe below.

Null model for GN : For the non-bipartite component we use the well-
studied Configuration Model(CM) [14, 15] that creates a degree-preserving ran-
dom graph. Consider a random approach that starts with an empty graph, picks
two of the “unsaturated” vertices uniformly at random and connects them by
an edge; a vertex is saturated when its number of edges equals its degree in GN .

Null model for GB: We extend CM and generate a random graph with
the same degrees as in GB . The BiCM null model also generates graphs with
the same properties [20], however, they use entropy-maximization unlike our
combinatorial approach. We will, anyhow, denote our model too by BiCM.

We will follow the exact same approach as in CM and add edges between
two randomly chosen unsaturated vertices, one each from L and V . Clearly, the
final random graph has the same degrees as in GB and also the same number
of edges. Favoring simplicity, we allow the random graph to have multiple edges
between vertices just like in CM.

Next we state a technical lemma on the expected number of common labels
in BiCM. Consider any labeled-graph G from BiCM, and further, consider any
two nodes u, v ∈ V and any label l ∈ L. Let N l

u,v denote the indicator variable

that is 1 iff l is the labeling of both u and v; further, let Nu,v =
∑

l∈L N l
u,v

denote the number of common labels. Let m denote the number of edges, du and
dv denote the degrees of u and v and cl denote the number of nodes which have
the label l.

Lemma 1. The expected value of Nu,v is
∑

l∈L
cl≥2

1
(

m
cl

)

r+g≤cl
∑

r=1...du

g=1...dv

(

du
r

)(

dv
g

)(

m− du − dv
cl − r − g

)

Proof (Proof sketch). A standard approach is to attach deg(x) stubs to a vertex x
and connect to unassigned stubs at each step. Then the probability of selecting
cl stubs from the nodes, where there are du stubs from u, dv stubs from v
and (m− du − dv) other stubs, follows a trivariate hypergeometric distribution.
E[N l

u,v], which is same as the probability of selecting at least one stub of u and
v each, can be now easily calculated from which the lemma follows.

An equivalent, but easier to compute, expression for E[N l
u,v] can be obtained

by applying the Chu-Vandermonde identity:

E[N l
u,v] =

[

(

m
cl

)

+
(

m−du−dv

cl

)

−
(

m−du

cl

)

−
(

m−dv

cl

)

]

/
(

m
cl

)

3.2 Structural-Functional Divergence

The labeled-graphs represent two networks — one composed of structural links
between nodes and another representing functional attributes. We conjecture
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Algorithm 1 CBCPM: Finding overlapping SF clusters

Input: Labeled-graph GL = 〈V,E, L, l〉
Output: Overlapping clusters of V
Percolation parameters: kl, ks ∈ Z+

1: L ← list of MLMCs of GL with ≥ kl labels & ≥ ks vertices.
2: Form MLMC-overlap network N :
3: Each node of N is an MLMC Mi of L
4: Edge between Mi = 〈Li, Vi〉 & Mj = 〈Lj , Vj〉 if
5: |Li ∩ Li| ≥ kl − 1 & |Vi ∩ Vj | ≥ ks − 1
6: Obtain list C of connected components of N
7: for all connected component C ∈ C do

8: Output cluster {v : ∃〈L′, V ′〉 ∈ C, v ∈ V ′}

that in many domains these two networks may converge with time as the nodes
forge new structural links based on functional similarities or acquire new func-
tionalities based on structural linkages. One way to measure the (dis)similarity
of these two networks is to compare the general component with a monopartite
projection of the bipartite component. For the latter, we fall back on the BiCM
null model instead of other proposed approaches [21, 11]; the correct projection
method really depends upon the application and was not investigated further.
E[Nu,v] is computed on GB in the definition below.

Definition 1. Given a labeled-graph G = 〈V,E,L, l〉, define its (λ, κ)-functional
projection as an unlabeled graph G′ on V in which an edge exists between u
& v if |l(u) ∩ l(v)| ≥ min{λ, κE[Nu,v]}. Let CC(G) and CC(G′) denote the
mean clustering coefficient of G and G′, respectively. (λ, κ)-structural-functional
divergence of G is defined as: ∆SF

λ,κ(G) = CC(G)/CC(G′).

Choose some κ > 1. If there are κEu,v or more common labels between u
and v, then this indicates a strong functional similarity between u and v when
compared to the null model. The parameter λ is used for additional restrictions
on the minimum functional similarity.

3.3 Structural-functional clustering

The clique percolation method (CPM) is a popular method for clustering of en-
tities in a network considering only the structural links. This method identifies
overlapping clusters which are composed of several (overlapping and maximal)
cliques [18]. We are interested in clustering entities that are closely related both
structurally and functionally. A previous approach by Modani et al. [13] first
finds all MLMCs with a minimum number of nodes and common labels. Then it
obtains the subgraph induced by the nodes of the MLMCs. They rightly claim
that this subgraph is made up of those nodes that are better connected both
structurally and functionally. The authors then proposed to run any suitable
overlapping (or non-overlapping) algorithm (e.g., CPM) on this subgraph.

However, we think better clusters can be obtained if the functional similar-
ity is in-grained deeper in the cluster finding algorithm. Hence, we propose a
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“Clique-Biclique Percolation Algorithm” (CBCPM) outlined in Algorithm 1.
Like CPM, the clusters discovered by CBCPM are composed of maximal LCs.
Each cluster is constructed from several LCs that are “connected” — two LCs
are said to be connected if they overlap in at least ks nodes and at least kl
labels. The output of the algorithm are clusters of nodes from the connected
components of the network of maximal LCs.

3.4 Quality of structural-functional clustering

Finally, we study how to quantify the quality of overlapping clusters in a net-
work. Following the approach of Modani et al., we consider one measure for the
structural closeness of clusters and another for their functional similarity (or
cohesion). If necessary, a weighted sum of both the measures can be used to
construct a single measure of quality.

Suppose we are given clusters C = {C1, C2, . . . Ck} in a labeled-graph GL =
〈V,E,L, l〉 where Cis are subsets of V , not necessarily disjoint. We will use e
to denote the number of structural links in GL. Let δ(u, v) denote an indicator
variable for u and v co-occurring in some cluster together and similarly, E(u, v)
indicate an edge between u and 4. d(u) will denote the degree of a node u ∈ V
within the general component and l(u) will denote its labels. For any label s, let
c(s) denote the set of users that have s as one of their labels. comm(u1, u2, . . .)
shall denote the set of clusters that contain all of the nodes u1, u2, . . .. Even
though the clusters constitute only nodes, we will informally store the maximal
set of common labels of all the nodes within each cluster.

Structural quality: There are already a large number of options to choose
from for structural quality. For our experiments, we chose a generalization of the
highly popular Newman-Girvan “modularity” measure [16] that was proposed
by Shen et al. [22]. These are built upon the notion of “coverage” and a null
model. Coverage of a clustering is defined as the fraction of intra-cluster edges:
Cov(C) = 1

2e

∑

C∈C

∑

u,v∈C E(u, v) = 1
2e

∑

u,v E(u, v)δ(u, v)
Modularity was initially defined for disjoint clusters. To apply this to overlap-

ping clusters, a common trend is to use the notion of “belongingness” [17]. Shen
et al. defined the contribution of a node u towards a cluster C as βu,C = 1

|comm(u)|

if u ∈ C and 0 otherwise, and used it to define a generalized modularity OQ [22].

OCov(C) =
1

2e

∑

C∈C

∑

u,v∈C

E(u, v)βu,Cβv,C

OQ(C) = OCov(C)− E[OCov(C)] =
1

2e

∑

C∈C

∑

u,v∈C

[

E(u, v)− dudv

2e

]

βu,Cβv,C

Functional quality: Despite several measures to quantify the similarity of
nodes in a bipartite network, the only measure we found that was given explicitly
for functional cohesion was “likemindedness” (LM) [13]. Let S : V ×V → R[0, 1]
be a relevant measure for the functional similarity of two vertices, e.g., Jaccard
similarity, Hadamard similarity, etc. Modani et al. defined likemindedness as
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the average similarity of all intra-cluster pairs of nodes (including pairs with
duplicates, to remain consistent with modularity as hinted by the authors):
LM(C) =

∑

C∈C

∑

u,v∈C S(u, v)/
∑

u,v δ(u, v)
Consider a clustering in which there is one cluster with the two most similar

nodes and all other nodes are in a single-member cluster each. It is easy to
show that these clusters attain the maximum LM of maxu6=v S(u, v) among all
clusterings. This led us to conclude that LM favors smaller, in fact, single or two
membered, communities — not really a worthwhile measure of cluster quality.

This prompted us to define a new metric ΦC for functional cohesion. First,
we define “cohesion” of a clustering as the fraction of intra-cluster similarities
over total similarity, enhanced with belongingness.

CohS(C) =
∑

C∈C

∑

u,v∈C

S(u, v)βu,Cβv,C/
∑

u,v

S(u, v)

Definition 2. For any similarity metric S and a clustering C of a labeled-graph,
let E[CohS(C)] be the expected cohesion in a corresponding BiCM random graph.
Then functional modularity can be defined as: ΦCS(C) = CohS(C)−E[CohS(C)]

Construct a complete weighted graph G′ on V with weight of any edge (u, v)
equal to S(u, v). By construction, the functional modularity on G is same as the
overlapping modularity of G′.

For our experiments we used the Hamming similarity metric SH which is
simply the fraction of labels that u and v have in common. Note that Coh and
E[Coh] are not affected by the normalization factor. Instead, E[Coh] depends
upon the edges which is governed by the null model. The following lemma will
be useful in simplifying the denominator of E[CohSH ]. Recall that in the BiCM
null model, the degree sequence of all nodes and all labels are fixed.

Lemma 2. Consider all graphs with a fixed set of labels, say L, and in which,
|c(l)| is fixed for every l ∈ L. Then,

∑

u,v SH(u, v) = 1
σ

∑

l∈L:|c(l)|>1

(

|c(l)|
2

)

The proof uses a simple double-counting of the nodes with a particular label.
The denominator in E[CohSH ] (and also in CohSH ) therefore becomes a constant
independent of the (random) graph. Furthermore, observe that E[SH(u, v)] in
the random graph is same as E[Nu,v] in GB (defined earlier).

Theorem 1. Functional modularity of a clustering C under Hamming similarity
can be computed as:

ΦSH (C)=
∑

C∈C

∑

u,v∈C

[

S(u, v)− E[Nu,v]
]

βu,Cβv,C

/

∑

l∈L
|c(l)|>1

(

|c(l)|

2

)

4 Evaluation Results

To evaluate the effectiveness of our approaches, we applied them to several real-
life datasets (described in Table 2). The “Twitter-small” dataset is constructed
from the Twitter dataset [10] with edges representing “following a celebrity”;
we selected as labels those users with followers between 15000 and 16000 (i.e.,
celebrities) and for nodes, those non-celebrities with 6000-65000 followers.
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Table 2. Labeled-graph datasets used for experimental evaluation.

Dataset Type

Links

repre-

sent

. . .

Labels

represent

. . .

Nodes Labels
Node

links

Labe-

lings

Num.

of

MLMC

Ning Cre-

ators’ Net.

(Ning) [12]

Social net-
work

Friends
Group affil-
iation

11011 81 76262 4812 5459

‘Café The-

Markers’s

(CTM) [12]

Social net-
work

Friends
Group affil-
iation

93664 88 1.74M 221610 34.7M

Ciao DVD

(Ciao) [8]

Ratings
of DVD
reviews

Mutual
trust

Reviews
rated more
than 2/5

20336 66109 7017 1.52M 79029

Filmtrust

(FT) [9]
Movie rat-
ings

Mutual
trust

Movies
rated more
than 2/5

1530 1881 544 28580 1996

Last.fm (Lfm)
[3]

Social net. of
music listen-
ers

Friends
Artists lis-
tened to

1892 17632 25434 92834 32344

Twitter-small

(TwS) [10]
Social net-
work

Mutual
followers

Celebrities
followed

1150 276 45360 42658 140M

4.1 SF-divergence

First we report the SF-divergence of our labeled-graph datasets in Table 3; we
skip Ciao since it involved computing CC for a large number of nodes and labels
which did not finish within a day.

A SF-divergence value less than one of indicates that there are several nodes
that share functionalities but are yet to form structural links. On the other hand,
a value more than one indicates that nodes are yet to fully acquire functionalities
from structurally connected nodes. We conjecture that the SF-divergence of a
static social network (in which users are not joining or leaving) should approach
one in long term. We can see that the CTM and TwS networks display this
behavior better than the other networks. This is expected for the TwS dataset
since the “labels” in this network are celebrities and two users who follow each
are more likely to follow the same celebrities. CTM users anyway show a highly
“matured” behavior as was observed earlier in Figure 2a.

4.2 Discovering overlapping communities

Now we report the quality of overlapping communities obtained by our CBCPM
algorithm (Algorithm 1). Our goal was to show that, for similar setting of pa-

Table 3. SF-divergence values

Dataset ∆SF
2,3

FT 0.28
Ning 0.39
Lfm 0.27
CTM 0.82
Tws 0.85

Table 4. Quality of Ning and FT communities

Dataset Parameters Method OQ [22] LM [13]

Ning (*) kl = 3
ks = 4 CBCPM 0.05 3.38
ks = 5 CPMCore 0.03 2.17

FT
kl = 3 ks = 3

CBCPM 0.35 5.27
CPMCore 0.41 4.91

kl = 4 ks = 3
CBCPM 0.27 5.51
CPMCore 0.39 4.93

(*) Best ks for kl = 3 is used that maximized LM.
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rameters ks and kl, CBCPM creates communities with better likemindedness
than the existing CPMCore method [13] of running the CPM algorithm on the
subgraph of nodes that are present in the MLMCs with at least kl labels and
ks nodes. These parameters are related to the “percolation” of clique/labeled-
cliques and has to be chosen carefully that was beyond our scope. Too large
values may not find any community and too small values will create a single
community. Therefore, we conducted experiments with different values of ks ≥ 3
and that of kl ≥ 3 and only considered clusters with at least two communities.
We compared the overlapping modularity [22] (OQ) and the likemindedness [13]
(LM) of the communities obtained by our CBCPM algorithm vs. those given by
CPMCore [13]. We used the unnormalized Hamming similarity for S().

The Ning and the FT datasets generated very few MLMCs for some param-
eters. Therefore, we set kl = 3, ks ≥ 3 for Ning which generated 118 MLMCs.
Similarly, we used kl ≥ 3, ks = 3 for the FT dataset that gave us 72 MLMCs.
Results for the two clustering algorithms are presented in Table 4.

The quality measures of the larger Ciao and Lfm datasets are illustrated in
Figures 3 and 4, respectively. We tried several different values of kl (indicated
as CBCPM-kl and CPMCore-kl) and ks (X-axis). We observed that CBCPM
consistently found communities with higher LM compared to those found by
CPMCore. Due to the stronger enforcement of functional similarity, CBCPM
modularities are expected to be lower; however, we observed that the change
is highly non-uniform here and sometimes even higher. We conclude that, in
comparison to CPMCore, CBCPM finds communities with better functional
qualities and with competitive structural qualities.
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5 Conclusion

Labeled-graphs are a richer representation of networks that can also store at-
tributes of nodes, apart from the usual node-node relationship, and has been
gaining popularity. In this work we show how to analyse the maximal labeled-
cliques of these graphs, a concept that was recently introduced [2], and then
show how to use those structures to identify clique-based communities. We also
introduce a null model and a statistic to represent the attribute-level similarities
within a community.
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