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“Essentially, all models are wrong, but some are useful fast.”
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ABSTRACT

With the advent of big data, graphs have gained popularity as one of the most efficient

data storage mechanisms. A graph can not only capture relationships between entities,

but it can also store attributes associated with entities in the form of attributed nodes.

This makes graphs quite a versatile data structure. Attributed network embedding refers

to the task of representing each node of a graph as a low-dimensional vector so that it

captures its neighborhood associations and attribute information. A downstream ma-

chine learning algorithm can use such an embedding to perform node classification,

link prediction, and community detection tasks. Several learning-based methods were

recently proposed that can produce high utility embeddings, but they scale poorly in

terms of embedding space and embedding time with respect to network size, and stutter

for massive billion-scale networks.

Our study addresses this problem by introducing BGENA (Binary-embedding GENer-

ator for Attributed graphs), which uses a recently proposed fast and utility-preserving

sketching method BinSketch along with a novel edge propagation mechanism to gen-

erate binary embeddings of each node. BGENA is designed to preserve any arbitrary

order of proximity of nodes within its embedding. As a result of using only fast bitwise

operations for the entire embedding process, BGENA achieves anywhere between 10×

to 100× speedup compared to some existing methods. BGENA’s binary embeddings

allow for efficient bit-array/sparse-matrix representations to save space, making it four

to eight times better in terms of the system’s memory requirement. We also propose its

parallelized version named PBGENA (Parallelized BGENA), which uses MPI to lever-

age the multi-core architecture of a system to further accelerate the embedding speed to

nearly 16× over BGENA.

PBGENA produced embedding results for all our graphs with 20,000 or fewer nodes in

less than a second using an AMD 32-Core 3.2GHz server, and it did the job for TWeibo,

a graph with over 2 million nodes and 50 million edges, in less than two minutes.
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Further, BGENA is the only method known to us that was able to embed MAKG, a

graph with nearly 60 million nodes and a billion edges, within the 270GB memory

cap of the system in just 8 hours with comparable accuracy. We evaluate PBGENA

embeddings on tasks like node classification, link prediction, and graph visualization

with several real-world networks of varied sizes, and outperform the state-of-the-art

baselines in performance, often by large margins and at a fraction of the time. Our

experiments found that specific embedding methods prefer particular graphs where the

results are in the top echelon but underperform significantly for other graphs. However,

after hyperparameter tuning, no such effects were observed for PBGENA. All of these

make PBGENA a robust, high-utility, cost-effective, and low space budget embedding

method.

Keywords: Attributed Network Embedding, Network Representation Learn-

ing, Node Embedding, Sketching, Edge Propagation, Node Clas-

sification, Link Prediction, BinSketch, Parallelization, Message

Passing Interface
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NOTATIONS

Π Random Mapping Function between two sets
π Random Mapping Function from a categorical set to a boolean
ψ Maximum Sparsity among the rows of a binary matrix
G An undirected graph
V The vertex set of a graph
E The adjacency matrix/list of a graph
A The attribute matrix of a graph
a Number of attributes
N Embedding dimension
α Attribute fraction
bt Topology bitset probability
ba Attribute bitset probability
lt Number of levels in topology propagation
la Number of levels in attribute propagation
ft Reduction fraction for bt
fa Reduction fraction for ba
emb Output embeddings
Nt Topology dimension
Na Attribute dimension
St Topology sketches
Πt Topology mapping function
Sa Attribute sketches
Πa Attribute mapping function
Et Topology embedding
Ea Attribute embedding
p Number of processors
rank Processor identification
Φ Mapping between nodes and processors
in− edge An edge whose vertices belong to the same partition
cross− edge An edge whose vertices belong to different partitions
Ts Time complexity for serial algorithm BGENA
Tp Time complexity for parallel algorithm PBGENA
S Speedup of a parallel algorithm over its serial version
E Efficiency of a parallel algorithm over its serial version
m Maximum degree of all nodes in a graph
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CHAPTER 1

INTRODUCTION

Graphs are perhaps the most naturally occurring data structure in the real world. Any

system with entities and interactions can be easily represented using graphs because

graphs are abstract data types with vertices and edges capable of modeling complex,

non-linear relationships between objects [1]. The most obvious example of a network

encompassing all of us is the world wide web but it is hardly the only one. A few

common examples of graphs in every day life include online social networks [2], road

networks [3], citation networks [4], or even networks originating from protein interac-

tions in human tissue [5] to name a few. Graphs, being omnipresent in the real world,

have motivated the problem of Network Representation Learning (NRL). NRL refers

to the task of learning low-dimensional representations of the network’s vertices while

preserving the network’s topological structure and attributes [6]. This chapter will at-

tempt to introduce and motive the problem of network representation learning and then

present our contribution to the problem.

1.1 Motivation

Attributed Network Embedding (ANE), also known as NRL, is an essential task at the

heart of graph mining which plays a pivotal role in many emerging applications. One

application of network analysis is to predict which users one user might follow in social

networks based on their past profile activity and connections. Such a recommendation

system can not only be used to discover like-minded individuals online but also help

in targetted advertising and refining personalized user search [7]. ACM had hosted its

annual KDD cup in 2012 based on graph data obtained from the Chinese microblogging

website Tencent Weibo. Politecnico di Milano and Oracle Labs had also organized a

Kaggle competition based on multi-label vertex classification three years back on graph

data obtained from protein interactions. Another application of ANE solvers lies in

communication networks, where detecting community structures can help understand

how information is spread. In biological networks, predicting the role of different pro-

teins can accelerate drug discovery, and in chemistry networks, predicting the role of



the chemical structures can help us synthesize new compounds [6, 7]. All these tasks

fall under the category of community detection and node classification, which are two

of the most fundamental tasks in graph analysis.

Another well-studied problem in the area of NRL is link prediction, first introduced

by Liben-Nowell et al. [8] in 2004, for addressing the dynamic nature of most real-

world graphs. In the real world, graphs are never static and constantly evolving, so

the link prediction task tries to quantify a model’s ability to predict future links given

a present snapshot of the network. Typically, this problem is formulated by randomly

removing a percentage of edges from the graph and further generating dubious edges,

and then testing the model’s ability to correctly classify the actual unseen edges from

the dubious ones. Just like community detection and node classification, link prediction

has tremendous utility for emerging systems.

Other less known graph tasks include using embeddings for graph visualization [9] and

performing attribute inference [10]. Graph visualization aims to generate meaningful

visualizations through the node embeddings of the graph for visualizing class separation

and to have a better idea of the natural clusters present in the graph. Attribute Inference,

on the other hand, is the problem of predicting which attributes are most pronounced in

a node.

1.2 Problem Statement

Given a graph G(V,E,A), where V , E, and A are the vertex set, adjacency matrix,

and attribute matrix of G, the task of attributed network embedding is to produce an

embedding emb : v ∈ V 7→ R|V |×N ; where N is the number of dimension of the

embeddings and typically N << |V |.

1.3 Overview

Various real-world graphs often exhibit characteristics like non-linearity, sparseness,

dynamicity, and heterogeneity [11] which make the task of NRL especially challenging.

Even though great strides have been made in GNNs recently [12], most simple machine

learning models still find it difficult to learn directly from graphical data. The primary
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issue lies in the scale of the problem. Therefore scientists [13] and engineers [14] have

come up with the notion of node embedding. Node embedding is closely related to

the task of dimension reduction [15]. An embedding of a node in a graph is required

to preserve both the topological and attribute information of each node in a network.

A few desirable properties of a good embedding are that the nodes which are close to

one another in the graph should also be close in the vector space of their embeddings.

Similarly, two nodes sharing a large number of mutual neighbors should be close in the

vector space of their embeddings. We further desire similar properties with respect to

the attributes of each node in the network.

Many old factorization and learning-based methods stutter at large-scale graphs and is

not a viable solution in the future for learning from massive graphs, therefore there has

been a recent push for fast node embedding schemes [16, 17, 18]. Our method, PB-

GENA, is one such effort to provide a fast, alternate embedding scheme for massive

graphs. PBGENA is not the first sketching-based embedding method; NetHash [17] is

another attempt at trying to use MinHash [19] sketches for attributed network embed-

ding. We believe that in a world of rapidly increasing connectivity, billion-scale graphs

would become commonplace. In such a future, any learning-based embedding scheme

would be rendered unworkably slow. Therefore, fast sketching-based methods is the

way to go. To that effect, we have proposed a novel graph embedding method named

BGENA (Binary embedding GENerator for Attributed graphs) that uses a binary di-

mension reduction method named BinSketch and a novel edge propagation mechanism

to generate graph embeddings that preserves both topological and attributed features of

a node in a graph. BGENA is nearly 10 to 100 times faster than most commonly used

embedding schemes but remains competitive with all the modern ANE solvers in terms

of its performance. We further propose a parallel version of BGENA named PBGENA

(Parallelized Binary embedding GENerator for Attributed graphs), which makes use

of a system’s multi-core architecture with the help of MPI protocol to accelerate PB-

GENA. PBGENA is also perfect for graphs stored in a distributed manner.

To reduce the time needed for edge propagation we have exclusively used bitwise op-

erations for the entire process. PBGENA is not just efficient in terms of its speed but

also in terms of its memory requirement because PBGENA embeddings are binarized,

that can be stored efficiently in bitarray and sparse matrix-like data structures. We have

3



demonstrated how PBGENA is capable of preserving any arbitrary order of proxim-

ity between two nodes when generalized by repeated level-wise edge propagation. We

have also analyzed the space and time complexities for BGENA, and have shown that

it is linear in terms of the graph structure. Finally, we have performed a rich array of

experiments to demonstrate the superiority of PBGENA both in terms of performance

and speed. These experiments include node classification, link prediction, graph visu-

alization, and parameter sensitivity tests.

1.4 Contributions

We have compiled all the relevant information regarding our proposed methods of

BGENA and PBGENA in the subsequent chapters, and this is a list of our major contri-

butions to the field of NRL:

• We have proposed a novel space-preserving and scalable binary embedding method
for attributed graphs named BGENA, for producing high-quality embeddings
which are at par with the performance of the state-of-the-art contemporary meth-
ods.

• We are among the first generation of ANE solvers to use fast sketching methods
to compute node embedding of a graph capable of preserving any arbitrary order
of proximity.

• We also propose a parallelization scheme for BGENA named PBGENA to fur-
ther accelerate its performance using a system’s multi-core capability through a
message passing interface.

• Finally, the numerous experiments performed in this study with 13 real-world
graphs and 7 recently published methods demonstrate the superiority of PBGENA
both in terms of speed and performance.

1.5 Organization

We have organized this report primarily into five chapters and an appendix. In chap-

ter 2, we discuss the various studies which are closely related to this one, which includes

some background about the history of ANE solvers and other closely related areas like

community detection, graph partition, GNNs. Chapter 2 also looks at some of the most

4



popular sketching methods. In chapter 3, we introduce our main algorithm BGENA

along with the idea of BinSketch, edge propagation, and its complexity analysis. Chap-

ter 4 primarily deals with the parallelization of BGENA and sheds light on the speedup

obtained through the process. We showcase all our experiments in chapter 5 including

dataset and baseline descriptions, results obtained, and the numerous sensitivity analy-

sis we have performed. Finally, in chapter 6, we conclude the thesis by summarizing the

study and pointing to some interesting future directions in which this study can be ex-

tended. In the appendix, we provide the hyperparameters used for producing the results

and also showcase some minor analyses.
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CHAPTER 2

RELATED WORK

Network representation learning is not a recent endeavor. Yan et al. [15] had proposed

back in 2006 that graph embedding could potentially be used as a unifying framework

to test all dimension reduction methods owing to the fact that node embeddings of a

graph will necessarily be required to preserve the proximity between nodes. Initially,

the usual dimension reduction methods like PCA [20], LDA [21] had been tried to ad-

dress the problem of NRL. These were typically underperforming because they were

primarily linear algorithms and could not model the non-linearity inherent in graphs.

To address this problem, the next generation of NRL methods included algorithms like

Isomap [22] and SpectralClustering [23] which were able to model the non-linearity of

graphs, but were extremely slow and could not reliably be used for large scale networks

which is why they fell out of favor. These days NRL methods are able to encode within

its node embedding both the structure and the attribute information of graphs. These

methods can be broadly classified into categories like factorization-based, NLP-based,

autoencoder-based, sketching-based, and GNNs. Other than these there are a few mis-

cellaneous methods that do not strictly fit into any category. This chapter provides an

overview of these methods along with introducing some well-known papers which have

been the most successful in the area of NRL.

2.1 Factorization-based Methods

Factorization-based methods usually work in two stages- first, they build a proximity

matrix that encodes the topological and/or attribute information of nodes into a more

compact form. This step usually determines the order of proximity which will be pre-

served by the embedding. The second step involves factorizing the matrix using various

techniques. For instance, TADW [24] uses low-rank matrix factorization for generat-

ing embeddings whereas TENE [25] uses non-negative factorization. Another impor-

tant contribution by the authors of TADW was the proof that NLP-based random walk

methods like DeepWalk are essentially similar to matrix factorization-based methods.

BANE [26], another factorization-based ANE solver, uses the idea of Weisfiler-Lehman



graph kernels [27] to propose a novel matrix factorization scheme that outputs binary

embeddings. LQANR [28] is like an extension to BANE which learns embeddings

of the form {−2b, . . . , 2b}N , where b is the bit-width. BANE and LQANR are both

attempts at improving space complexity while sacrificing performance.

2.2 NLP-based Methods

These are the class of methods that view the problem of NRL through the lens of NLP.

The connecting bridge between NRL and NLP comes from Zipf’s Law [29], which

states that the word frequency in any document is inversely proportional to its rank in

the corpus. Surprisingly, it has been observed that the frequency with which nodes ap-

pear in short random walks of a graph also follows Zipf’s power law. This idea was first

popularized by the authors of DeepWalk [13] who treated random walks over vertices

of the network as sentences in a corpus and then fed this information to the popular

language modeling tool SkipGram [30] to output the embeddings. DeepWalk has in-

spired a whole array of papers to improve and contribute to this idea. One such effort

was made by Tang et al. in their paper LINE [31], who tried to concretize the idea of

DeepWalk by introducing the notion of proximity measures in a network. LINE pre-

serves second-order proximity in its embedding scheme which ensures nodes that share

many mutual neighbors are closer in the vector space of their embeddings. node2vec

[32] is another effort in the same direction that presents a unique metric to model two

basic graph traversal techniques- BFS and DFS within its random walk. Their objec-

tive function has the flexibility of controlling which traversal mode to emphasize and

empirically node2vec outcompetes DeepWalk and LINE. A common drawback of all

these methods is the fact that they do not take the attributes of nodes into account while

performing the embedding. This drawback has been lifted by recent papers like SINE

[33] and IANRW [34] which uses the idea of second-order proximity between nodes

even they share common attributes.

2.3 Autoencoder-based Methods

Since the task of ANE is essentially a modified dimension reduction problem [15], a

common approach is to use autoencoders to solve ANE tasks. Hence, it is not surpris-

7



ing that the literature is abundant with autoencoder-based methods. Autoencoders are

neural networks that compress and subsequently decompress data repeatedly with the

objective of minimizing the decompression loss. Zhang et al. have proposed ANRL

[35] that uses a neighbor enhancement autoencoder with an attribute-aware SkipGram

model [30] to embed network structure and attributes. Sheikh et al. in their 2020

paper demonstrate SAGE2VEC [36], which uses an autoencoder with an enhanced de-

coder specifically designed to learn both network topology and attributes. SAGE2VEC

can capture non-linearities (second-order proximity) and even works well with sparse

graphs with sparse features. Researchers at IISc and IBM have recently published their

autoencoder-based ANE solvers DONE and AdONE [37]. Both the models use two au-

toencoders (one for topology and the other for attributes) where DONE pays particular

attention to community outliers whereas AdONE uses adversarial learning.

2.4 Sketching-based Methods

Due to the scale of graphs in the real world, research in NRL has recently shifted its

attention towards fast ANE solvers. The present study is the product of a similar line

of thinking. PBGENA is among the first generation of sketching-based NRL methods

but it is not the only one. NetHash [17] constructs a reversed parent pointer tree for

every node and passes on exponentially decaying MinHash [19] digests from leaves to

the root. NodeSketch [38] uses consistent weighted sampling [39] that can be used to

estimate a weighted variant of Jaccard similarity to model proximities of a network in

its embeddings. QUINT [40], the precursor to PBGENA, is another sketching-based

embedding scheme that uses BinSketch [41] for sketching the topological features of a

graph.

2.5 Miscellaneous Methods

With such a rich and abundant source of literature, there are bound to be NRL methods

that do not fit cleanly into any box. One such method is ComE [9], a community-

aware node embedding strategy, that jointly performs community detection and node

embedding in an expectation maximization algorithm-style method. ComE views com-

munities in a graph as a multi-variate Gaussian distribution in 2D space and leverages
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community detection to solve node embedding and vice versa. Another method for node

embedding is RandNE [16], which uses an extremely fast Gaussian random projection

method to map the network to a low embedding space. A slightly different approach to

graph learning comes from GNNs that train deep learning models directly on graphs.

GNNs are not a part of NRL in the strict sense of the term but GNNs have gained such

popularity in recent times that there exists a general-purpose PyTorch library for it 1.

This is hardly the end of NRL methods, but these were the ones we found interesting

enough to point out in our literature survey.

1https://github.com/pyg-team/pytorch_geometric
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CHAPTER 3

THE BGENA ALGORITHM

The sparsity of a graph is a major challenge in network representation learning [13].

This, however, is not a problem for BinSketch [41] which thrives on sparse binary

data making it ideal for network representation learning. BGENA is built on top of

BinSkecth and bitwise edge propagation making it one of the fastest proximity-preserving

embedding schemes available. This chapter discusses the background for BGENA and

its construction along with its time and space complexity analysis.

3.1 The BinSketch Scheme

BinSketch [41] is an efficient similarity-preserving sketching method for sparse binary

data proposed by Pratap et al. in 2019. BinSketch forms the backbone of the BGENA

algorithm. We use the BinSketch scheme to compress both the topological and the at-

tribute information of the input graph. BinSketch preserves distance metrics such as

inner product and Jaccard similarity between two vectors even at high degrees of com-

pression compared to other hashing schemes like DOPH [42] and CBE [43]. BinSketch

is also one of the fastest sketching methods, which uses only random mapping and

bitwise-OR for data compression, making it ideal for our purpose.

Algorithm 1 BinSketch Hashing Scheme

Input: X ∈ {0, 1}n×d, N
Output: S ∈ {0, 1}n×N where N << d, Π

Initialisation: S ← On×N

1: def BINSKETCH (X , N ) :
2: Π : {1, 2, . . . d} 7→ {1, 2, . . . N} {random mapping}
3: for all non-zero entries in (i, j) ∈ X {sketching}
4: S[i,Π(j)]← 1
5: S[j,Π(i)]← 1
6: return S, Π

In Algorithm 1, BinSketch takes a vector of d dimensions as input and outputs a com-

pressed sketch of the vector in N dimensions (N << d) with the help of a mapping Π.

The time complexity to generate a random integer in the range [0, N) is O(logN), and



the mapping Π generates d such random numbers so the time complexity for computing

Π turns out to be O(d logN).

The next part of the BinSketch algorithm involves hashing each vector in the dataset

using Π, that is, S[i, j] ←
∨

k:Π(k)=j

X[i, k]; ∀i ∈ [1, n],∀j ∈ [1, N ]. Now the adjacency

matrix and the attribute matrix of the input graph are both available to us in terms

of sparse matrices, which is why we can simply go through the non-zero entries of the

matrices and perform the appropriate bitwise-OR operations, as described in lines 3-5 in

the Algorithm 1. The complexity of this step depends on the sparsity of the input matrix

X . Let the maximum non-zero count among all the rows inX be denoted by ψ, then the

time taken to sketch each row is given byO(ψ). BinSketch needs to sketch every vector

in X ∈ {0, 1}n×d to produce the sketched matrix S ∈ {0, 1}n×N , and finally returns the

sketches along with the mapping. Therefore the complexity of hashing turns out to be

O(nψ). The total complexity of the BinSketch scheme for compressing n vectors of d

dimension each into N dimensions turns out to be O(d logN + nψ).

3.2 Sketching Topology and Attributes

The key idea in trying to use BinSketch for attributed network embedding is to realize

that both the adjacency matrix and the attribute matrix of a graph are available as sparse

matrices. Therefore, these matrices can be provided directly to the BinSketch subrou-

tine as input for sketching. In BGENA, we embed topology and attributes independent

of one another. The adjacency matrixE ∈ {0, 1}|V |×|V | is compressed into the topology

sketches St ∈ {0, 1}|V |×Nt using BinSketch; where Nt is the topology dimension.

Algorithm 2 CABIN Sketch

Input: X ∈ {0, 1, . . . , c}n×d, N
Output: S ∈ {0, 1}n×N where N << d

Initialisation: Y ← On×d

1: def CABIN (X , N ) :
2: for i← 1 to d:
3: π[i] : {1, 2, . . . c} 7→ {0, 1} {random mapping for all input dimensions}
4: for j ← 1 to n:
5: Y [j][i]← π[i](X[j][i]) {binarize}
6: S, Π← BINSKETCH (Y , N )
7: return S, Π
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Sketching attributes are not as straightforward as sketching topology. Attributes can

appear in various forms: binary, categorical, discrete, or real-valued. One way to con-

vert categorical values to binary is by using one-hot encoding [44]. This, however, is

not very helpful because the dimension of the data will explode immediately. A recent

paper has proposed using an algorithm named CABIN [45] to perform embedding of

categorical data using BinSketch. The CABIN algorithm [2] uses two mappings π and

Π, unlike one in BinSketch, for the categories and hashing respectively. In lines 4-5 we

first binarize the categorical data using π followed by calling BinSketch which uses Π

to produce the binary sketches.

A graph, in general, can also have weighted edges and real-valued attributes thereby

forcing the underlying embedding method to generalize. In such a case a logical exten-

sion for the sketching pipeline of PBGENA would be to perform binning [46] of the real

values to categorical values followed by the use of CABIN. However, for the purposes

of this study, we have only used binary adjacency matrices and binary attribute matrices

to generate our results.

3.3 Edge Propagation

The BinSketch paper [41] proves that even though the sketches themselves do not pre-

serve distance metrics like the inner product and Jaccard similarity precisely, we can

obtain good approximations of them within decent error bounds. BinSketch alone has

already been tried as an ANE solver by the paper QUINT [40]. Even though QUINT

outperforms several older baselines and is extremely fast, it fails to match the perfor-

mance of modern ANE solvers. Other than the performance fallback, QUINT also does

not use attributes in its embedding scheme, meaning that it is not capable of using the

full support provided by the network. These drawbacks prompted us to use an attribute

pipeline and a novel edge propagation mechanism for enhancing the performance of

BinSketch.

The idea behind edge propagation is that nodes that are topologically close in the graph

should also be close in the vector space of their embeddings. The closeness can be de-

scribed both in terms of topology and attributes or either. Edge propagation is related to

the idea of proximity measure that was popularized by Tang et al. in their paper LINE
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Figure 3.1: Idea of Proximity

[31]. The first-order proximity of a node v is the vertex set that shares a direct edge

with v, and the attributes demonstrated by v (graph A in Figure 3.1). The second-order

proximity between two nodes can be loosely defined as the degree of shared neigh-

bors (graph B in Figure 3.1). In other words, two nodes can be close to one another

if they have many mutual neighbors and/or attributes, even when they do not share a

direct edge. BinSketch models the first and second order proximities of nodes. In some

sense, BinSketch creates a reduced graph to preserve the proximities, but the first-order

proximity is weakly expressed through BinSketch. For instance, consider graph C in

Figure 3.1, if we were to take the inner product between the colored nodes after BinS-

ketch, we would end up with a low value, but their inner product should be significant

since they share a direct edge. To alleviate this problem, we introduce the notion of

edge propagation which strengthens the first-order proximity of the embeddings and

also has the ability to encode higher orders proximity within its embeddings.

Figure 3.2: A demonstration of the edge propagation mechanism

In edge propagation, we pass a digest of the sketch along with both the directions of the

edge to update the embeddings of the connected nodes (Figure 3.2). We perform this

once for the attributes (line 19 in Algorithm 3) and once for the topology (line 12). Now

that we are performing an operation for every edge in the graph, the complexity for the

edge propagation is in the order of O(|E|); meaning that we need to be economical in
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every operation so as not to consume additional time. Therefore, we come up with edge

propagation using only bitwise operations.

In order to compute digests for every node, we create a random binary vector Q of size

equal to the embedding dimension. This vector is created such that every bit of Q is

set with a probability of b and unset with a probability (1 − b) (line 9 in Algorithm 3).

We refer to b as the bitset probability of the vector Q. Q is generated independently for

every node but we keep the bitset probability constant throughout. To create a digest

D[v] for every node v we perform: D[v] ← S[v] ∧ Q; where S[v] is the BinSketched

compressed vector of the node v (line 10 of Algorithm 3). This ensures that the digest

will retain all the zeros in S[v], but may flip some non-zeros. Thus, the digests contain

a subset of the non-zero values of the sketches. This digest of node v is then propagated

to all neighbors of v, using bitwise-OR as described in line 12 of Algorithm 3. The

ultimate effect of this propagation is that some of the bits which were set in S[v] are

now set in E[u], where u is a neighbor of v. Thus the inner product of the colored

nodes in graph C in Figure 3.1, after single edge propagation, is no longer insignificant.

In other words, we have strengthened the first-order proximity of the embeddings. A

schematic demonstration of edge propagation in action is shown in Figure 3.3.

BGENA with single propagation also preserves third-order proximity if the bitset prob-

abilities are high enough. To achieve higher orders of proximity, demonstrated via

graph D in Figure 3.1, we propose repeated edge propagation through various levels.

This can be achieved by performing several runs of edge propagation through the entire

graph with exponentially decreasing bitset probability each time. Our experiments with

real-world datasets have shown that repeated edge propagation does not really help in

making predictions. We, therefore, concluded that for real-world datasets, being able to

model first and second order proximities are enough for achieving good performance.

With that knowledge, we perform all our experiments with a single pass of edge prop-

agation. However, for a graph that requires support through higher-order proximities,

BGENA can be easily generalized by setting l > 1 in line 7 of Algorithm 3.
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3.4 Building BGENA

In this section, we discuss how to put everything together to construct the BGENA algo-

rithm. We realize that certain graphs carry more support through their attributes while

others carry more support through their topology. We further realize that the topology

and attribute propagations can be performed independently of one another with differ-

ent bitset probabilities. This makes the BGENA algorithm even more flexible. Later

these independent pipelines will be exploited to parallelize BGENA.

Algorithm 3 The BGENA Algorithm

Input: Attributed Graph G(V,E,A), α, N , bt, ba, lt, la, ft, fa
Output: Node Embeddings emb ∈ {0, 1}|V |×N

Initialisation: emb← O|V |×N

1: def BGENA (G, α, N , bt, ba, lt, la, ft, fa) :
2: Na ← N ∗ α, Nt ← N ∗ (1− α)
3: St, Πt ← BINSKETCH (E, Nt) {topology mapping and sketching}
4: for i← 1 to |V |:
5: St[i,Πt(i)]← 1
6: Sa, Πa ← BINSKETCH (A, Na) {attribute mapping and sketching}
7: for i← 1 to lt:
8: for j ← 1 to |V |:
9: Qt ← [{0, 1}Nt |P (Qt[k] = 1) = bt, ∀k ∈ {1 . . . Nt}]

10: Dt[j]← St[j] ∧Qt, Et[j]← St[j]
11: for (j, k) in E: {topology propagation}
12: Et[j]← Et[j] ∨Rt[k], Et[k]← Et[k] ∨Dt[j]
13: St ← Et, bt ← bt/ft
14: for i← 1 to la:
15: for j ← 1 to |V |:
16: Qa ← [{0, 1}Na |P (Qa[k] = 1) = ba,∀k ∈ {1 . . . Na}]
17: Da[j]← Sa[j] ∧Qa, Ea[j]← Sa[j]
18: for (j, k) in E: {attribute propagation}
19: Ea[j]← Ea[j] ∨Da[k], Ea[k]← Ea[k] ∨Da[j]
20: Sa ← Ea, ba ← ba/fa
21: emb← CONCATENATE(Et, Ea)
22: return emb

The primary hyperparameters of BGENA areN which is the embedding dimension, and

αwhich is the fraction of the embedding dimension to be used for attributes. This solves

the problem of having to decide the number of dimensions to be used for attributes for a

specific graph. The other hyperparameters include the bitset probabilities for topology

and attribute bt and ba respectively.

The since all the vectors used in the BGENA algorithm are binary, we have imple-
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Figure 3.3: Working of BGENA

mented BGENA entirely using bitarray 1, a fast and efficient array for booleans in

Python. Bitarrays store booleans as bits instead of bytes, which enabled us to consid-

erably outperform our competitors in terms of system memory required for embedding

large networks.

The hyperparameters lt and la indicate the level of edge propagation, i.e., the number of

times BGENA should perform edge propagation through the topology embeddings and

the attribute embeddings. For all our experiments, we have set lt = 1, la = 1. If one

decides to choose values greater than one for these two hyperparameters, it is not clear

how to set the values for ft, and fa, which are the fractions by which the topology and

attribute bitset probabilities are reduced in each pass. A value of 2 seems to be a good

choice but a more rigorous analysis is required to settle the issue.

3.5 Time Complexity

Primarily BGENA can be decomposed into three operations: mapping, sketching, and

propagation. Each of these three segments has two pipelines: one for topology and the

other for attributes. Out of these three operations, mapping is the fastest and propagation

is the most time-intensive. Let us now individually look at their respective complexities.

1https://github.com/ilanschnell/bitarray
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3.5.1 Mapping

As discussed in section 3.1, mapping a set of d numbers to a set ofN numbers randomly

takes O(d logN) time. Following the same logic for topology mapping, we compute a

random mapping from a set with cardinality |V | to a set with cardinality Nt, implying

that the complexity would be O(|V | logNt). Similarly, for attribute mapping, we have

O(a logNa), where a is the maximum number of attributes possible for a node in the

graph. The cumulative mapping cost sums up to beO(|V | logNt+a logNa). If we want

to represent explicitly in terms of the hyperparameters, then we will have the following

expression: O(|V | log(N(1− α)) + a log(Nα)).

3.5.2 Sketching

The first sketching operation as described in lines 4-5 of Algorithm 3 takes O(|V |)

time. The second sketching operation involves going through the non-zero entries of

the adjacency matrix and setting the appropriate bits as described in Algorithm 1. This

operation obviously takes O(|E|) time. Finally, we go through the non-zero entries of

the attribute matrix and set the appropriate bits, which takes O(|A|) time, where |A| is

the number of non-zero entries of the attribute matrix. Hence the cumulative sketching

cost becomes O(|V |+ |E|+ |A|).

3.5.3 Propagation

For topology propagation, we compute the random vectorQt for every node, which con-

sumes O(Nt|V |) time. After generating the digests Dt using Qt [time upper bounded

by O(Nt|V |)], we need to perform the edge propagation over all edges |E| in both

directions using only bitwise operations, meaning that the total time for topology prop-

agation comes out to beO(ltNt(|V |+|E|)); the lt multiplier is due to multiple passes of

edge propagation. Using a similar analogy, we can conclude that the time for attribute

propagation is O(laNa(|V |+ |E|)).

Therefore complexity of the most generalized version of BGENA turns out to be:

O(|V | logNt + a logNa + |V |+ |E|+ |A|+ ltNt(|V |+ |E|) + laNa(|V |+ |E|))
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Simplifying this we get,

O(a logNa + |A| + ltNt(|V | + |E|) + laNa(|V | + |E|)) (3.1)

For the purposes of experimentation in this paper we have set lt = la = 1, this fact can

help us further simplify Equation 3.1 as:

O(a logNa +N |V | +N |E| + |A|) (3.2)

For most real-world datasets, a logNa ≪ |A| and N is constant (for this study N =

2000). Therefore we can say that the time complexity of BGENA is linear in terms of

O(|V |+ |E|+ |A|).

3.6 Space Complexity

The Space Complexity of BGENA is given by the maximum amount of additional mem-

ory required by the algorithm at any point. This is known as the bottleneck of the

algorithm. We can easily see that the maximum utilization of memory occurs in the

edge propagation phase when we need to simultaneously maintain three matrices: the

sketches S, the digests D, and the embeddings E. Each of these matrices is of type

{0, 1}|V |×N . Therefore we can conclude that the final complexity of the BGENA algo-

rithm is O(N |V |) bits. This means that throughout the running time of the BGENA

subroutine, the amount of space required never asymptotically exceeds the space of the

embeddings themselves.
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CHAPTER 4

PARALLELIZATION OF BGENA

Even with all the speed and might of BGENA, it can take nearly 8 hours for it to embed

MAKG (as indicated in Table 5.6). Also, massive graphs can be stored in a distributed

fashion (which is true for many ego networks and they require preprocessing), making it

harder for BGENA or any other serial algorithm to process everything in a single CPU.

Keeping all of these things in mind, we have proposed PBGENA, the parallel version of

BGENA that retains all the embedding properties of BGENA but can provide excellent

speedup by exploiting a system’s multi-core capabilities using MPI. In this chapter,

we explore the various schemes for parallelizing BGENA and discuss the underlying

algorithm along with its complexity bounds.

4.1 Parallelization Architecture

MPI [47] is the standard API for distributed computing featuring a message-passing

paradigm for IPC, and it is the leading paradigm in HPC. MPI is an interface for dis-

tributed memory systems (Figure 4.1, Source: Wikipedia). Contrary to popular belief,

MPI is not an implementation, it is a standardization and many open-source implemen-

tations are available, like OpenMPI1 and MPICH2. MPI defines the syntax and seman-

tics of parallelization for writing programs using languages like C and C++. These

standards do not apply to high-level scripting languages like Python. This is where

mpi4py [48] comes in to bridge the gap between MPI and Python.

mpi4py supports several features which are very useful for writing parallel programs at

a high level. Unlike MPI for C/C++, which are stuck with message passing using arrays,

mpi4py has the flexibility of sending pickled objects across various processors which

makes it easier for PBGENA to pass the digests as bitarray objects across different

processors. mpi4py comes bundled with an object-oriented API, making it very natural

to code with. Finally, mpi4py also has the capability of sending out-of-band buffers

1www.open-mpi.org
2www.mpich.org

www.open-mpi.org
www.mpich.org


Figure 4.1: Distributed Memory System

across processors using the Pickle-5 [49] protocol which may be useful for PBGENA

for embedding massive graphs with a limited number of CPUs.

4.2 Parallelizable Tasks

As discussed earlier in section 3.5, the three major tasks in BGENA include mapping,

sketching, and edge propagation where mapping is the most lightweight task and edge

propagation is the most expensive. We present the dependency graph between the vari-

ous tasks in Figure 4.2.

Figure 4.2: Task Dependency Graph

In the making of PBGENA, we investigated the prospect of parallelizing various com-

binations of operations and experimentally verified their speed. To split the graph

across different processors, we perform a random partition of nodes (described in line

4 of Algorithm 4). We investigated the use of graph partitioning toolkits like METIS

and ParMETIS [50] to reduce the communication overheads between processors, but

METIS in itself turned out to be a bottleneck so we performed simple random parti-

tioning. We observed that it is computationally cheaper to perform the mappings on a
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single processor and then broadcast them instead of doing it parallelly. After the serial

mapping is broadcasted from the first processor (line 7 of Algorithm 4), we perform the

sketching of each node in parallel (lines 8-11 of Algorithm 4) with no need for IPC.

Next, we perform edge propagation for the edges where both the vertices of the edge

are present with the processor (lines 13-14 of Algorithm 4). For the edges that go across

different processors, we first exchange the digests and then perform edge propagation

(lines 16-17 of Algorithm 4). In our implementation of PBGENA, we always batch the

data to be sent across any two processors to make it more efficient.

4.3 Parallelization Scheme

The traditional "master-slave" approach to parallel computing does not treat the I/O

part of the parallel program differently from the serial code. In other words, the I/O

should be performed by the "master" processor and be distributed to the other "slave"

processors. The advantage of this protocol is that the RAM requirement for the inputting

does not exceed that of the serial code. However, our experiments showed that BGENA

is by itself so fast that distributing the data across processors itself takes significant time

and a speedup of more than 2× is not possible. To circumvent this problem, we perform

a parallel reading of the graph into different processors. All our datasets, except MAKG,

were parallelly read into our system by 32-cores using 270GB of physical memory.

As it may be evident from Algorithm 4, we do not consider the reading time of the

graph as part of our algorithm. PBGENA assumes that the adjacency list of every node

along with its attribute set is available in a dictionary-like [49] format. All the input

parameters for PBGENA are identical with BGENA except p and rank which identifies

the number of processors and the processor ID respectively.

4.4 Complexity Overview

In this section, we discuss the time and space complexity of PBGENA. Experimentally

it was observed that PBGENA is on average about 16× faster than BGENA and more

demanding in terms of memory. The following subsections provide a richer understand-

ing of the underlying complexities:
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Algorithm 4 The PBGENA Algorithm

Input: Attributed Graph G(V,E,A), α, N , bt, ba, lt, la, ft, fa, p, rank
Output: Node Embeddings emb ∈ {0, 1}|V |×N

Initialisation: emb← O|V |×N

1: def PBGENA (G, α, N , bt, ba, lt, la, ft, fa, p, rank) :
2: Na ← N ∗ α, Nt ← N ∗ (1− α)
3: if rank = 1:
4: Φ : {1, 2, . . . |V |} 7→ {1, 2, . . . , p} {random partition}
5: Πt : {1, 2, . . . |V |} 7→ {1, 2, . . . , Nt} {topology mapping}
6: Πa : {1, 2, . . . a} 7→ {1, 2, . . . , Na} {attribute mapping}
7: broadcast Φ, Πt, Πa from Processor with rank = 1
8: for i : Φ(i) = rank do in parallel:
9: St[i,Πt(i)]← 1 {topology sketching}

10: St[i,Πt(j)]← 1;∀j ∈ E[i]
11: Sa[i,Πt(j)]← 1;∀j ∈ A[i] {attribute sketching}
12: for all (i, j) ∈ E do in parallel:
13: if Φ(i) ̸= Φ(j) and (Φ(i) = rank or Φ(j) = rank): {for cross-edges}
14: exchange digests Dt, Da with the other processor
15: perform Edge Propagation in the same way as Algorithm 3
16: return emb

4.4.1 Time Complexity

Similar to BGENA (section 3.5), the time complexity of PBGENA is dependent on

the three stages of the algorithm: mapping, sketching, and propagation. Now since

mapping is performed serially, the time complexity for mapping remains the same in

BGENA and PBGENA: O(|V | logNt + a logNa) [subsection 3.5.1]. The next part of

the process is sketching nodes. The sketching of nodes can be done in parallel without

any need for inter-process communication [lines 8-11 of Algorithm 4]. Therefore the

complexity for sketching in PBGENA becomes O( |V |+|E|+|A|
p

), where p is the number

of processors [refer to subsection 3.5.2 for the derivation]. Finally, we need to find the

complexity for edge propagation which relies on the number of edges that lie within

a partition, and the number of edges that lie across two partitions. Let us call them

in-edges and cross-edges respectively. Given that we have partitioned the vertex set

into p processors using a random mapping Φ, the probability of an edge being an in-

edge becomes 1/p, which means that the expected number of cross-edges that reside

across two different partitions becomes |E| ∗ (1 − 1
p
). Assuming O(N) cost for prop-

agation of each digest, the time complexity of edge propagation mechanism becomes

O( ltNt(|V |+|E|)+laNa(|V |+|E|)+(p−1)N |E|
p

). Summing everything up, the asymptotic time
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complexity of PBGENA becomes (derivation in subsection 3.5.3):

O(p|V | logNt + pa logNa + |A|+ ltNt(|V |+ |E|) + laNa(|V |+ |E|) + (p− 1)N |E|
p

)

(4.1)

Putting lt = la = 1 we get,

O(
p|V | logNt + pa logNa +N |V | + (p+ 1)N |E| + |A|

p
) (4.2)

Realistically, the terms |V | logNt and a logNa are negligible, so we can safely assume

that the serial time is Ts = O(N |V |+N |E|+|A|) (from Equation 3.2), and parallel time

is Tp = O(N |V |+(p+1)N |E|+|A|
p

) (from Equation 4.2). Now the speedup S of a parallel

algorithm is defined as S = Ts/Tp. Hence the speedup obtained from PBGENA turns

out to be:

S = p ∗ N |V |+N |E|+ |A|
N |V |+ (p+ 1)N |E|+ |A|

(4.3)

A similar metric used for calculating the performance of a parallel algorithm is effi-

ciency E , which is defined as E = Ts/(pTp)

E =
N |V |+N |E|+ |A|

N |V |+ (p+ 1)N |E|+ |A|
(4.4)

Experimentally PBGENA has demonstrated an average speedup of 16× over BGENA

by using 32 cores.

4.4.2 Space Complexity

The memory requirement of PBGENA is slightly more than BGENA due to storing the

additional:

• Partition mapping Φ (line 4 of Algorithm 4) in every processor.

• The operation i : Φ(i) = rank (line 8 of Algorithm 4) is very expensive unless
we store locally in each processor Φ−1, indicating the nodes which are available
to it.

• Some sketch digests Dt and Da are duplicated multiple times in the processors
because they are not available with the processor.

The space required to store Φ and Φ−1 are negligible as compared to the space for

the embeddings O(nN) (derived in section 3.6). The main issue comes as a result of

duplicated digests. Since one digest can be duplicated across p processors in the worst
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case, the space complexity becomesO(npN). Practically, this bound is extremely loose

because there are repeated cross-edges originating from the same node since the average

degree of a node in real-world graphs is > 1. A tight bound on the space complexity of

PBGENA is O(N |V |) bits (same as BGENA, the proof is provided in Appendix B).
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CHAPTER 5

EXPERIMENTS

The previous chapters have detailed the power of sketching and its use in building our

parallel embedding scheme. Even though PBGENA looks good on paper we need to

experimentally support our claims. Therefore, in this section, we showcase the various

experiments that we have performed with BGENA and PBGENA along with how they

compare with the state-of-the-art baselines and description of the datasets and base-

lines. Our experiments include testing PBGENA with its baselines for tasks like node

classification, link prediction, graph visualization, and understanding the sensitivity of

PBGENA hyperparameters through an array of detailed experiments and figures.

5.1 Dataset Description

We collect all our data from the PANE [18] authors, who provide the graphs in a pre-

processed format 1. The dataset description for the graphs is available in Table 5.1.

The table provides the count of the number of nodes, edges, attributes, and labels in

the graph. The fourth column of Table 5.1 indicates whether the graph is multi-labeled,

meaning whether nodes may belong to more than one class. Multi-labeled graphs can

further compound the problem of node classification. A single node in a graph like

Twitter can potentially have more than 4000 labels. The datasets are organized in in-

creasing order of their node count.

5.1.1 Wikipedia

Wikipedia is a graph dataset created by the authors of TADW [24]. This dataset was

created by treating articles hosted at www.wikipedia.org as nodes and the hyper-

links between the articles and undirected edges. Each Wikipedia article is composed

of long texts of 640 words on average, which were used to create the attributes for the

graph. The labels mostly indicate the type of article they are. The Wikipedia dataset is

available online2, but we have used the preprocessed format from the PANE authors1.

1http://www4.comp.polyu.edu.hk/~jiemshi/datasets.html
2https://github.com/thunlp/TADW/tree/master/wiki

www.wikipedia.org
http://www4.comp.polyu.edu.hk/~jiemshi/datasets.html
https://github.com/thunlp/TADW/tree/master/wiki


Table 5.1: Dataset Description

Multi-Graph #Vertices #Edges #Attributes #Labels Labeled?
Wikipedia 2,405 12,761 4,973 17 No

Cora 2,708 5,278 1,433 7 No
CiteSeer 3,312 4,660 3,703 6 No
Facebook 4,039 88,234 1,283 193 Yes

BlogCatalog 5,196 17,1743 8,189 6 No
Flickr 7,575 23,9738 12,047 9 No

PubMed 19,717 44,327 500 3 No
PPI 56,944 81,8716 50 121 Yes

Twitter 81,306 1,342,310 216,839 4,065 Yes
Google+ 107,614 12,238,285 15,907 468 Yes
Reddit 232,965 57,307,946 602 41 No

TWeibo 2,320,895 50,133,382 1,657 9 No
MAKG 59,249,719 976,901,586 7,211 100 Yes

5.1.2 Cora

The Cora dataset was prepared by Lu et al. [51] using research papers from the web-

site www.cora.justresearch.com. This is a citation network which means that

the network is comprised of research papers in ML as nodes and citations as edges.

The attribute set for the network is composed of keywords that appear in the papers.

These keywords are filtered using stemming and stopword removal. The classes of the

node indicate the subject matter which the papers deal with, like Case-Based, Genetic

Algorithms, Neural Networks, Probabilistic Methods, Reinforcement Learning, Rule

Learning, and Theory. Cora dataset is available online 3 for downloading.

5.1.3 CiteSeer

CiteSeer is yet another citation network prepared by Lu et al. [51]. The data for the net-

work was obtained from the website CiteSeerX https://citeseerx.ist.psu.

edu/index (previosly CiteSeer). The data preparation phase is identical to that of

Cora’s [subsection 5.1.2]. The labels of the papers in CiteSeer include Agents, Artificial

Intelligence, Database, Human-Computer Interaction, Machine Learning, and Infor-

mation Retrieval. The CiteSeer network is freely available online 3 at the website for

the LINQS group at the University of California, Santa Cruz.

3https://linqs.soe.ucsc.edu/data
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5.1.4 Facebook

The Facebook graph is an ego network that represents social relationships maintained

by an individual (ego) with other people (alters). These relationships can be thought of

as layers originating outwards from the ego and the associations are stronger with the

ones close to the ego than others [52]. The ego network for Facebook is made up of

friends lists from the website www.facebook.com. The data for this network was

obtained from an anonymized survey. The Facebook network can be obtained online

from the SNAP website4.

5.1.5 BlogCatalog

BlogCatalog (www.blogcatalog.com) used to be a website for bloggers for post-

ing blogs and related discussions. The nodes in the graph are the bloggers themselves

and the attribute set is constructed from keywords generated from blog descriptions pro-

vided by the authors. The labels of the network represent the categories of the authors.

The BlogCatalog network was originally prepared by Tang et al. [53] in 2009. The

preprocessed data is available from CAN’s [10] GitHub page 5.

5.1.6 Flickr

www.flickr.com is a media-hosting platform, where users interact by sharing pho-

tos. The connections between different users form the edges in the graph, and the in-

terest tags are considered as attributes. The labels of this network represent the groups

that exist on Flickr. This network was originally proposed by Huang et al. [54] in their

2017 paper. The Flickr network is available online 5.

5.1.7 PubMed

The PubMed website (https://pubmed.ncbi.nlm.nih.gov) is a repository

for more than 33 million citations for biomedical literature. The nodes of the PubMed

citation network [55] are diabetes articles obtained from the PubMed database. Similar

to Cora and CiteSeer, PubMed interprets citations as links of a network. The attributes

are made of TF/IDF-weighted word frequencies and the labels indicate the type of di-

4https://snap.stanford.edu/data/ego-Facebook.html
5https://github.com/mengzaiqiao/CAN/tree/master/data

27

www.facebook.com
www.blogcatalog.com
www.flickr.com
https://pubmed.ncbi.nlm.nih.gov
https://snap.stanford.edu/data/ego-Facebook.html
https://github.com/mengzaiqiao/CAN/tree/master/data


abetes in the paper: Type-1, Type-2, and Gestational Diabetes. The data is publicly

available online 3.

5.1.8 PPI

PPI stands for Protein-Protein Interaction, which is a network recently introduced by

Hamilton et al. in 2018 in their paper GraphSAGE [5]. PPI, a multi-labeled graph, is

essentially a collection of multiple graphs with each graph modeling the interactions

between proteins in a different human tissue. The positional gene sets, motif gene sets,

and immunological signatures are used as features in the graph and the gene ontology

sets are used as labels. The raw data for the graph can be obtained from https:

//thebiogrid.org and the preprocessed graph is also available online 6.

5.1.9 Twitter

Twitter is another ego network in our dataset collection. This data was collected from

public sources from the website https://twitter.com. The dataset includes pro-

files, circles, and ego networks 7. It was first introduced by McAuley at al. [2] in 2012.

5.1.10 Google+

Similar to Facebook (subsection 5.1.4) and Twitter (subsection 5.1.9), Google+ is an-

other ego network introduced by McAuley at al. [2] in 2012. https://currents.

google.com used to be a social networking site operated by Google which is now

shut down, but the graph data is still available online 8.

5.1.11 Reddit

https://reddit.com is a very old and popular website for content-sharing and

discussions. Reddit is divided into sections or "subreddits" for segregating the type

of content being discussed. GraphSAGE authors [5] treat posts made in the month of

September 2014 on 50 large communities on Reddit as nodes, and two posts share an

edge if the same user comments on both. The subreddit on which the post lies is treated

as its label. The Reddit network is available online 6 for download.
6http://snap.stanford.edu/graphsage
7https://snap.stanford.edu/data/ego-Twitter.html
8https://snap.stanford.edu/data/ego-Gplus.html
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5.1.12 TWeibo

TWeibo (http://t.qq.com/) was a Chinese microblogging website that was re-

cently shut down. The KDD Cup 2012, Track 1 9 presented the TWeibo dataset for

participants to compete for making the best recommendation system for users on the

website to follow. The PANE authors [18] subsequently extracted 1657 most popu-

lar tags and keywords from its user profile data as the node attributes, and the labels

indicate the age of the users.

5.1.13 MAKG

MAKG, the largest graph among our networks, is a large RDF data set with over eight

billion triples with information about scientific publications and related entities, such as

authors, institutions, journals, and fields of study. The raw data is available at https:

//makg.org/. MAKG is essentially a citation network where each node represents a

paper and each directed edge represents a citation. The PANE authors [18] extract 2000

most frequently used distinct words from the abstract of all papers as the attributes and

the fields of study are treated as labels.

5.2 Baselines

We have used Karate Club [56], an open-source python framework for unsupervised

graph learning, for all our baselines, except for PANE [18] whose code was obtained

directly from the GitHub page of its authors 10. A bigger and more descriptive expla-

nation of embedding methods, in general, is available in chapter 2. This section only

attempts to provide a brief description of the methods used to compare PBGENA. The

baselines are provided in chronological order of their date of publication:

5.2.1 TADW

Yang et al. [24] proved that DeepWalk [13], a well-known NLP-based method, built

using the SkipGram model is actually equivalent to the method of matrix factorization.

They further go on to propose their own method TADW for embedding nodes using both

9https://www.kaggle.com/c/kddcup2012-track1
10https://github.com/AnryYang/PANE
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the topology and the attribute information ("rich text"). TADW constructs a second-

order proximity matrix M using the adjacency matrix of the graph and then proceeds to

minimize the difference between the product of the embeddings learned and the attribute

matrix with M . They also incorporate a regularization term involving the Frobenius

norm of the learned embeddings. The complexity of TADW is quadratic with respect

to the number of edges in the graph.

5.2.2 TENE

Text Enhanced Network Embedding [25] is yet another factorization-based method on

our list. Similar to TADW, TENE constructs a second-order proximity matrix as X =

X(1)+5 ∗X(2) where X(1) and X(2) denote the first and second order proximity matrix

respectively. It then performs a non-negative factorization of both X and the attribute

matrix T . Now, in order to make the learned embeddings be aware of the attributes,

it performs a third matrix factorization which tries to minimize the difference between

the topologically learned embeddings and the embeddings obtained from factorizing

the attribute matrix. In other words, TENE tries a joint factorization of the adjacency

matrix and the attribute matrix.

5.2.3 SINE

Scalable Incomplete Network Embedding [33] is an extension to DeepWalk [13]. SINE

proposes using random walks to find pairs of vertices that belong together otherwise

known as "context," and also tries to incorporate node-attribute relationships into the

embedding. SINE formulates this probabilistic learning framework using a three-layer

neural network whose output is the probabilities P (vi|vj) and P (a|v) where v ∈ V and

a ∈ A and the input are the one-hot representation of each node. The weight matrices

going from the input layer to the hidden layer are the learned embeddings.

5.2.4 ASNE

ASNE [57] is a deep-learning-based method that is specifically targeted towards the

learning of social networks. ASNE uses a deep learning architecture to jointly learn

structural and attribute associations between nodes. Unlike most methods that learn the

attributes and topology of a graph separately, ASNE chooses to incorporate the node
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attributes in the input layer itself for better-integrated learning of associations between

nodes and attributes.

5.2.5 PANE

PANE [18] was published in the year 2020 and as of the writing of this thesis can be

considered as the state-of-the-art of ANE solvers. PANE combines techniques like ran-

dom walk and matrix factorization into its embedding scheme. Instead of using the

original graph, PANE constructs an extended graph where bidirectional links are es-

tablished between individual attributes and nodes. PANE is one of the few methods

that respect the directedness of the underlying graph during its random walk. Using

random walks to capture attribute and structural information, and cyclic coordinate

descent [58] to jointly factorize the forward and backward affinities, PANE achieves

significant performance gains. To enhance speed, PANE employs an effective greedy

weight initialization scheme and parallelization through multiple threads.

5.2.6 FeatherNode

Feather [59] uses short random walks to represent the affinity between two nodes. Its

authors define a characteristic function between a node and its multi-level neighbors,

similar to Fourier transforms but for probability distributions, and also gives a linear

time algorithm to evaluate this function for all nodes. Feather uses the value of these

functions at several discrete points as feature vectors, effectively yielding an algorithm

that performs very well for representing nodes in terms of their neighborhoods. Feath-

erNode is a graph neural network model that uses an r-scale random walk weighted

characteristic function.

5.2.7 MUSAE

MUSAE [60] is an ANE solver that uses a random-walk-based method (similar to the

ones described in section 2.2) to capture higher-order proximities of nodes from its lo-

cal distribution of attributes and neighbouring nodes. MUSAE demonstrates through

their experiments that using a "multi-scale" approach of storing distinct proximities ob-

tained through various features may actually be advantageous for downstream machine

learning tasks.
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Apart from these, we have also experimented with BANE [26], another binary em-

bedding method. According to our convention, embeddings with binarized values have

been allowed to go as high as 2000 dimensions. However, BANE is considerably slower

than BGENA even at N = 128, which is why we have decided to leave out BANE as a

baseline.

5.3 Experimental Setup

We perform all our experiments on an AMD EPYC 7452 32-Core 3200MHz Pro-

cessor running Ubuntu 20.04.2 LTS with 270GB of RAM. The dataset description

for all our datasets is provided in section 5.1. We have selected eight state-of-the-art

baselines for comparison in our study and a detailed description of them is provided in

section 5.2.

Table 5.2: Embedding Dimensions (N ) for various methods

Graph Algorithm
TADW TENE SINE ASNE PANE FN MUSAEa BGENA PBGENA

Wikipedia 250 250 250 250 250 250 248 2000b 2000
Cora 250 250 250 250 250 250 248 2000 2000

CiteSeer 250 250 250 250 250 250 248 2000 2000
Facebook 250 250 250 250 250 250 248 2000 2000

BlogCatalog 250 250 250 250 250 250 248 2000 2000
Flickr 250 250 250 250 250 250 248 2000 2000

PubMed 250 250 250 250 250 250 248 2000 2000
PPI 250 250 250 250 100c 250 248 2000 2000

Twitter 250 250 250 250 - 250 - 2000 2000
Google+ - 250 - 250 250 250 - 2000 2000
Reddit - 250 - 250 - 250 - 2000 2000
TWeibo - 250 - 250 250 250 - 2000 2000
MAKG - - - - - - - 2000 -

aThe MUSAE source code available with us did not allow exactly 250 dimensions
bPBGENA stores 2000 bits, whereas the other baselines store 250 floats
cThe PANE source code available with us requires N/2 ⩽ a

Since all our baselines output real-valued embeddings, we set the number of dimen-

sions to approximately 250 (exact values are available in Table 5.2) and set PBGENA’s

dimensions to 2000 because PBGENA stores bits. Note that real-valued elements con-

sume 4 bytes to 8 bytes for float32 and float64 representations respectively. This means

even at N = 2000, PBGENA is at least 4× better in terms of memory requirements. In

node classification results (section 5.4), we have also demonstrated the power of PB-

GENA at N = 8000 which is at an equal footing compared to its baselines. For Node
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Classification, we use 70% of the embeddings as a training set and the remaining is held

out for testing. While performing Link Prediction (section 5.5), we randomly remove

30% of the edges from the graph and create a reduced graph with only 70% of the origi-

nal edges, and generate embeddings using our various methods with the residual graph.

We further generate dubious edges which do not exist in the graph and also divide that

edge set into test and train. Finally, compute the cosine distance between two embed-

dings for the feature value and label the positive edges as 1 and negative edges as 0.

For the predictions in both tasks, we have used scikit-learn’s [61] Logistic Regression.

We present our results broken into three sets of tables for small-sized, medium-sized,

and large-sized graphs. We consider a graph to be small if it contains fewer than 5, 000

nodes and a graph to be large if it contains an excess of 100, 000 nodes, the remaining

are classified as medium-sized graphs. All the results presented are averaged over five

runs.

For graph visualization, we have used t-SNE [62] on the PBGENA embeddings to re-

duce the feature space into two dimensions and subsequently plotted them while col-

oring the nodes with their respective labels. This helps us to actually visualize class

separation resulting from the underlying embedding scheme. In the remaining experi-

ments, we test PBGENA’s speed and accuracy with respect to various hyperparameters

and also perform experiments to quantify how robust PBGENA actually is by reducing

the training ratio in node classification and increasing the fraction of removed edges for

link prediction.

5.3.1 System Requirements

The following are the system specifications and libraries required to run PBGENA:

• Windows 11 Home Single Language 21H2 / Ubuntu 20.04.3 LTS

• Python 3.10.0

• Microsoft-MPI 10.1.1 / Open MPI 4.1.2

• mpi4py 3.1.3

• pandas 1.3.5
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• numpy 1.21.4

• SciPy 1.7.3

• bitarray 2.3.4

• scikit-learn 1.0.1

The source code for PBGENA is made available on GitHub 11.

5.4 Node Classification

Node Classification refers to the task of predicting the labels of each node of the graph

using the embeddings. Since we have multi-labeled graphs in our dataset (refer to

Table 5.1), there may be nodes with more than a single label. The results of node

classification are presented in the three tables- 5.3, 5.4, 5.5 below. We present the

performance of the various methods in terms of the averaged Macro-F1 and Macro-F1

scores, along with their confidence margins in terms of the standard deviation values

over five runs. We have used logistic regression to train on the generated embeddings

with a training ratio of 0.3. Micro-F1 measures the accuracy of label predictions and

Macro-F1 computes the mean accuracy over all the classes. We have compared the

performance of PBGENA at both 2000 and 8000 dimensions. When at N = 2000,

PBGENA is about four to eight times more economical in space, and at N = 8000

PBGENA is about twice as memory efficient. We have marked the best performances

in bold and colored our novel algorithm in green for better readability. Since BGENA

and PBGENA are essentially the same method, we do not perform the experiments

separately for BGENA.

In Table 5.3, we have compiled the node classification results for small graphs. We

can see that PBGENA at N = 2000 is superior to all other methods on the Facebook

network and PBGENA at N = 8000 is the best performing on the Cora dataset. Except

for Wikipedia, we are competitive with the other baselines on all other graphs. For

Wikipedia, we have come a close second with PANE and even though we are behind

MUSAE, it should be noted that MUSAE on the Wikipedia network is 1000× slower

than PBGENA (Table 5.6).
11https://github.com/tapadeep/PBGENA
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Table 5.3: Node Classification results with small graphs

Graph
Algorithm Wikipedia Cora CiteSeer Facebook

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
TADW 62.37± 1.39 71.27± 1.33 62.69± 0.94 65.61± 1.04 60.45± 1.12 64.33± 1.23 05.98± 0.44 29.35± 1.64
TENE 63.22± 2.60 72.30± 1.64 55.90± 1.74 61.50± 1.33 58.06± 1.39 65.31± 1.65 02.30± 1.69 07.57± 1.48
SINE 66.22± 3.55 76.57± 1.08 79.23± 1.00 80.79± 1.03 62.70± 0.91 66.80± 1.05 21.81± 0.80 66.70± 1.68
ASNE 67.65± 4.26 78.34± 1.15 79.86± 1.54 81.70± 1.15 64.22± 1.37 67.81± 1.33 26.66± 1.96 73.57± 1.62
PANE 68.65± 2.75 82.05± 0.70 85.19± 1.12 86.59± 1.18 71.30 ± 0.92 75.57 ± 0.98 14.07± 0.34 63.91± 1.17
FNa 56.63± 3.40 71.16± 1.68 81.27± 1.09 82.66± 1.02 67.16± 1.42 73.18± 1.58 24.97± 0.65 69.48± 1.38

MUSAE 76.90 ± 3.11 88.06 ± 0.82 82.79± 1.14 83.79± 0.77 65.91± 1.42 69.62± 1.25 31.59± 1.82 75.64± 1.99
(P)BGENA 66.32± 2.68 79.89± 1.51 83.82± 0.94 85.05± 0.71 68.99± 1.34 72.61± 0.62 32.94± 1.61 76.11 ± 1.38
(P)BGENA
(N=8000)

69.92± 2.02 80.03± 1.80 85.95 ± 0.95 86.67 ± 0.53 68.77± 1.02 72.75± 1.03 33.82 ± 1.78 75.31± 0.64

aFN: FeatherNode Embedding Strategy
∗Best Performance in bold

Table 5.4: Node Classification results with medium-sized graphs

Graph
Algorithm BlogCatalog Flickr PubMed PPI Twitter

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
TADW 84.39± 0.84 84.77± 0.93 73.73± 0.90 73.79± 0.95 83.71± 0.18 83.61± 0.12 18.52± 0.12 44.66± 0.15 14.38± 0.63 34.58± 1.02
TENE 81.41± 1.56 81.59± 1.50 21.32± 1.49 24.09± 1.61 30.21± 0.42 40.70± 0.63 13.58± 0.20 42.45± 0.14 09.19± 0.66 24.57± 0.84
SINE 93.19± 0.32 93.34± 0.33 85.18± 0.71 85.32± 0.67 87.59 ± 0.19 87.78 ± 0.16 19.65± 0.13 45.60± 0.14 19.01± 0.18 51.74± 0.54
ASNE 91.90± 0.78 91.99± 0.78 85.40 ± 0.45 85.55 ± 0.33 87.18± 0.62 87.25± 0.66 33.08± 0.51 52.50± 0.35 20.57± 0.50 52.67± 0.68
PANE 86.61± 0.61 86.76± 0.60 76.93± 0.74 77.20± 0.68 87.13± 0.49 87.29± 0.44 36.21± 0.20 54.60 ± 0.12 - -

FN 70.97± 0.57 71.38± 0.66 56.22± 0.60 56.67± 0.42 83.18± 0.32 83.40± 0.36 24.70± 0.17 49.73± 0.07 14.57± 0.20 40.63± 0.28
MUSAE 72.17± 1.81 72.43± 1.66 56.18± 0.65 56.47± 0.58 84.57± 0.55 85.30± 0.49 35.23± 0.21 53.79± 0.16 - -

(P)BGENA 91.36± 1.01 91.57± 0.96 76.64± 1.05 76.43± 1.06 86.51± 0.46 86.68± 0.45 40.21± 0.41 54.56± 0.28 25.85± 0.83 57.27± 0.47
(P)BGENA
(N=8000)

95.00 ± 0.33 95.08 ± 0.35 85.21± 0.80 85.25± 0.75 87.41± 0.20 87.54± 0.24 44.70 ± 0.19 53.70± 0.14 28.05 ± 0.60 60.15 ± 0.77

−either ran out of memory or did not stop or crashed unexpectedly

Table 5.4 demonstrates the results of node classification on medium-sized graphs. We

find that PBGENA is the best method for networks like BlogCatalog, PPI, and Twitter.

We are very close for graphs like Flickr and PubMed, differing in the decimal places

when compared to the winners. For PPI and Twitter, we are significantly ahead in

Macro-F1 scores meaning that PBGENA embeddings are better equipped to distinguish

between different classes.

Table 5.5: Node Classification results with large graphs

Graph
Algorithm Google+ Reddit TWeibo MAKGa

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
TADW - - - - - - - -
TENE - - - - - - - -
SINE - - - - - - - -
ASNE 52.83± 0.31 78.85± 0.17 92.47 ± 0.12 94.18 ± 0.10 15.84± 0.06 56.54± 0.13 - -
PANE 29.06± 0.20 59.56± 0.28 - - 16.14± 0.02 57.43± 0.07 - -

FN 30.77± 0.35 53.52± 0.68 84.69± 0.17 89.49± 0.10 12.93± 0.02 51.62± 0.02 - -
MUSAE - - - - - - - -

(P)BGENA 58.53± 0.26 83.13± 0.35 86.65± 0.15 87.60± 0.06 16.35± 0.03 55.20± 0.09 36.99 ± 0.16 49.35 ± 0.21
(P)BGENA
(N=8000)

63.40 ± 0.33 89.15 ± 0.35 89.85± 0.14 91.09± 0.14 18.20 ± 0.05 57.87 ± 0.04 - -

aExperiments with MAKG were performed with a training ratio of 0.1

We present the results of node classification on large graphs in Table 5.5, and we are the

best performers in Google+ and TWeibo. BGENA was the only method able to perform

embedding on MAKG within the system’s 270GB memory limit. For MAKG we have

used a training ratio of 0.1 because of our system constraints.
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From the tables above we can see that the older methods don’t quite match up to PB-

GENA and PBGENA either beats or remains competitive when compared to the newer

methods. These tables do not quite show the superiority of PBGENA in terms of its

biggest asset, i.e., speed. Therefore we present the time required to generate the em-

bedding in Table 5.6. This table demonstrates just how fast PBGENA is against its

competitors. Note that some of these methods had the parallel capability and even

then falls significantly behind in speed. The only methods which are comparable to

PBGENA with respect to its embedding speed are FeatherNode and BGENA (serial

version of PBGENA) and it should be noted that FeatherNode failed terribly in the task

of node classification.

Table 5.6: Embedding Time (in seconds) for various methods

AlgorithmGraph TADW TENE SINE ASNE PANE FN MUSAE BGENA PBGENA
Wikipedia 11.80 253.07∗ 69.65∗∗ 108.91 17.04 8.56 1211.09 4.25 0.16

Cora 2.43 21.20 58.75 15.37 1.68 0.31 156.84 0.72 0.08
CiteSeer 2.07 34.29 70.09 24.20 1.96 0.34 239.07 0.95 0.12
Facebook 52.31 44.30 90.03 30.32 4.17 0.50 163.95 1.59 0.37

BlogCatalog 294.14 119.23 175.58 68.11 107.10 1.48 629.77 3.18 0.52
Flickr 753.27 106.64 259.02 76.94 231.78 1.43 546.09 3.71 0.67

PubMed 29.87 221.07 416.14 156.50 10.08 1.31 2226.47 6.52 0.56
PPI 1106.12 437.02 1102.36 440.23 5.57 4.87 1066.34 25.56 3.03

Twitter 5074.39 14040.34 3648.08 9612.05 - 419.56 - 243.61 6.26
Google+ - - - 24709.18 11741.49 419.28 - 869.14 17.87
Reddit - - - 18841.99 - 634.05 - 1006.16 65.10
TWeibo - - - 20920.17 5672.88 526.61 - 1173.07 115.93
MAKG - - - - - - - 30089.47 -

∗Time 1000× of PBGENA marked in red
∗∗Time 100× of PBGENA marked in orange

5.5 Link Prediction

Link Prediction tries to test how well can an embedding scheme cope with the dynamic

nature of graphs. In the real world, graphs are not static but form links (or associations)

over time. To model this problem, we have randomly removed 30% of the edges from

the graph and then generated embeddings with the residual graph using PBGENA and

the other baselines. We further generate a negative edge set containing pairs of nodes

that do not have an edge between them and leave out 30% of the negative edges as

a test set. Finally, we compute the cosine distance between all pairs of negative and

positive edges and label the positive and negative edges as 1 and 0 respectively. We

have used logistic regression to the training part (70%) of this data. We have used
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the area under receiver operator characteristic graph and average precision as the two

metrics to evaluate link prediction.

Table 5.7: Link Prediction results with small graphs

Graph
Algorithm Wikipedia Cora CiteSeer Facebook

AUCa APb AUC AP AUC AP AUC AP
TADW 77.45± 0.40 81.50± 0.40 59.33± 0.96 59.59± 0.50 64.00± 0.85 65.39± 0.10 57.40± 0.21 59.20± 0.27
TENE 87.50± 0.34 89.30± 0.36 48.76± 0.94 54.58± 0.85 59.74± 1.58 64.17± 1.13 59.97± 0.52 59.92± 0.78
SINE 76.82± 0.16 81.97± 0.15 87.05± 0.49 89.18± 0.49 92.75± 0.45 93.81± 0.50 87.97± 0.25 86.97± 0.26
ASNE 85.41± 0.52 88.76± 0.37 89.90± 0.57 91.39± 0.62 94.24± 0.29 95.17± 0.25 91.88± 0.16 90.96± 0.24
PANE 94.94 ± 0.27 95.60 ± 0.22 91.01 ± 0.44 92.59 ± 0.34 95.78 ± 0.38 96.45 ± 0.23 98.27± 0.07 98.02± 0.07

FN 87.94± 0.37 90.14± 0.30 82.32± 0.51 84.89± 0.69 84.30± 0.22 87.39± 0.35 96.72± 0.09 97.10± 0.08
MUSAE 91.55± 0.44 92.75± 0.30 90.03± 0.57 91.77± 0.27 94.58± 0.29 95.52± 0.32 98.54 ± 0.06 98.24 ± 0.13

(P)BGENA 86.63± 0.42 88.20± 0.42 89.44± 0.17 90.30± 0.44 93.45± 0.34 94.57± 0.21 97.72± 0.05 97.85± 0.05
aAUC: Area Under the Receiver Operating Characteristic Curve
bAP: Average Precision Score

Table 5.8: Link Prediction results with medium-sized graphs

Graph
Algorithm BlogCatalog Flickr PubMed PPI

AUC AP AUC AP AUC AP AUC AP
TADW 51.25± 0.11 51.04± 0.06 51.13± 0.29 51.36± 0.18 60.97± 0.65 60.28± 0.61 50.64± 0.06 53.68± 0.10
TENE 51.65± 0.30 51.73± 0.29 71.11± 0.82 75.56± 0.79 53.66± 0.48 54.71± 0.60 50.88± 0.13 53.50± 0.11
SINE 65.23± 0.19 66.56± 0.12 48.83± 0.35 48.06± 0.25 81.84± 0.16 84.83± 0.15 50.34± 0.18 53.84± 0.16
ASNE 62.81± 0.13 63.88± 0.19 44.38± 0.13 45.48± 0.12 89.69± 0.13 90.53± 0.17 90.40± 0.04 90.31± 0.04
PANE 67.90± 0.12 68.84± 0.23 59.00± 0.12 62.99± 0.12 93.58 ± 0.11 93.86 ± 0.14 70.42± 0.09 67.88± 0.12

FN 80.98± 0.07 80.64± 0.08 85.03± 0.08 85.83± 0.10 86.49± 0.19 87.38± 0.15 81.38± 0.07 81.79± 0.04
MUSAE 82.01 ± 0.33 81.91 ± 0.31 71.30± 0.64 70.27± 0.60 94.86± 0.05 95.13± 0.05 97.55 ± 0.02 96.42± 0.05

(P)BGENA 79.07± 0.14 78.77± 0.13 90.34 ± 0.09 90.41 ± 0.10 91.51± 0.10 92.06± 0.16 95.51± 0.03 96.42 ± 0.02

Table 5.9: Link Prediction results with large graphs

Graph
Algorithm Twitter Google+ Reddit TWeibo

AUC AP AUC AP AUC AP AUC AP
TADW 87.25± 0.07 89.80± 0.05 - - - - - -
TENE 97.94± 0.17 97.61± 0.21 - - - - 89.98± 0.80 92.99± 0.58
SINE 92.90± 0.06 94.68± 0.04 - - - - - -
ASNE 91.17± 0.08 94.12± 0.04 74.56± 2.92 73.61± 2.51 78.88± 0.05 82.04± 0.17 85.28± 0.04 86.47± 0.03
PANE - - 96.98 ± 0.00 94.35± 0.01 - - 80.82± 0.16 74.96± 0.11

FN 98.59 ± 0.01 98.58 ± 0.01 96.56± 0.00 95.91 ± 0.01 93.95 ± 0.01 94.49 ± 0.00 67.38± 0.02 55.58± 0.01
MUSAE - - - - - - - -

(P)BGENA 97.44± 0.01 97.51± 0.01 93.68± 0.04 93.34± 0.11 88.10± 0.01 86.16± 0.01 96.21 ± 0.04 96.38 ± 0.04

The results of link prediction have been compiled in tables 5.7, 5.8 and 5.9. We can see

that PBGENA is the best performing in graphs like Flickr, PPI, and TWeibo and for the

other graphs, we are always competitive. We can see some of the methods which work

well on a specific graph perform badly on other graphs but PBGENA has consistently

been among the top performers, with an average precision score of more than 90%

in nine out of the twelve graphs. Also, PBGENA is faster than all the baselines listed

above. This makes PBGENA embeddings highly scalable as compared to our baselines.
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5.6 Graph Visualization

Graph visualization is the task of creating meaningful visualizations from the embed-

dings of the graphs. To perform the visualization, we first choose four citation networks:

Cora, CiteSeer, PubMed, and Wikipedia, and compress the network using TADW, PB-

GENA, and some other embedding schemes. Then we perform t-SNE [62] to the node

embeddings to bring the dimension all the way down to 2. Finally, we plot them on a

2D plane and color them according to the labels of the nodes. The results of the visu-

alizations obtained from TADW and PBGENA are displayed with figures 5.1 and 5.2

respectively.

Figure 5.1: Visualizing graphs through TADW embeddings

(a) Wikipedia (b) Cora

(c) CiteSeer (d) PubMed

The task of distinguishing clear boundaries between different classes is not trivial. Of-

ten the labels are very closely related like in the Cora dataset, where all the papers

considered were from the field of machine learning (subsection 5.1.2) and it is a similar

situation with the CiteSeer network. The PubMed network only considers studies in the

area of diabetics. Even with all these limitations, we can clearly see from the figures

that PBGENA was able to produce comparably superior visualizations than TADW. The

various classes are much more clearly separated in PBGENA’s embedding.
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Figure 5.2: Visualizing graphs through PBGENA embeddings

(a) Wikipedia (b) Cora

(c) CiteSeer (d) PubMed

In Figure 5.3, we perform the same task of graph visualization using the embeddings

of the best performers (second-best if PBGENA was the best) in node classification.

We can see that PBGENA embeddings are just as capable of producing good visualiza-

tion as the state-of-the-art methods. It should be noted that PBGENA produces binary

embeddings while the others produce rich real-valued embeddings. Also, PBGENA

embeddings were compressed from N = 2000 to N = 2 as compared to TADW and

the other baselines whose embeddings were compressed from N = 250 to N = 2,

meaning PBGENA incurred a greater loss due to compression.

5.7 Parameter Sensitivity

In this section, we lay out the various sensitivity experiments performed using the nu-

merous hyperparameters of BGENA and PBGENA. We broadly categorize these ex-

periments into three subsections involving testing the model’s time, robustness, and

stability in different situations.

39



Figure 5.3: Visualizing graphs through various baselines

(a) MUSAE on Wikipedia (b) PANE on Cora

(c) PANE on CiteSeer (d) SINE on PubMed

5.7.1 Speed

The first set of experiments we performed on time was to identify the relationship be-

tween the time for embedding and the number of dimensions (N ) for both BGENA and

PBGENA. According to Equation 3.2, BGENA is linear in terms of O(N |V |) so for a

graph with a fixed number of nodes, we expect the curve to have linear growth and that

is what we observe from Figure 5.4.

Figure 5.4: BGENA Embedding Time v Dimensions

(a) Smaller Graphs (b) Large Graphs
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Figure 5.5 demonstrates the same experiment of embedding time versus time, but with

PBGENA instead. Again, we have seen previously in subsection 4.4.1, that the time

complexity of PBGENA is linear in O
(N |V |

p

)
. This means that we also expect a linear

time growth for PBGENA but due to the presence of the factor p, the curve will be

much flatter. This property can be observed in Figure 5.5 where even when the number

of dimensions is increased by a factor of 6, the required time does not double. This can

be explained by the fact that experiments showed in Figure 5.5 were performed with the

number of cores set to 32.

Figure 5.5: PBGENA Embedding Time v Dimensions

(a) Smaller Graphs (b) Large Graphs

In the analysis section (Appendix B), we have shown that the speedup obtained using

PBGENA is increasing with respect to the number of processors in use, at least in

theory. In this section, we test the actual relationship between the number of cores and

the time of embedding. Figure 5.6 displays the results and we can observe that the

time required for embedding falls sharply with an increase in the number of processors

but only to a certain extent and then saturates. Sometimes it may look as if the time

is increasing when using too many cores, this is a common phenomenon in parallel

computing which occurs when the communication cost between multiple cores starts

to affect the throughput. Curves like these can potentially help us set a standard for

PBGENA on the number of cores to practically employ, given the scale of the graph.

Finally, in timed experiments, we present the holy grail of this study in Figure 5.7,

i.e., the speedup obtained by PBGENA over its competitors. Missing bars in the plot

indicate that the algorithm in question was slower than 1000× the speed of PBGENA for
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Figure 5.6: Embedding Time v Number of Cores

(a) Smaller Graphs (b) Large Graphs

the same task. Note that some of our baselines are implicitly parallelized, and whenever

possible we let our baselines run with at most 32 cores just like PBGENA. We can easily

observe from Figure 5.7 that except for FeatherNode [59] and BGENA, no other method

even comes close to matching PBGENA in terms of embedding speed. From the tables

of section 5.4, it is apparent that FeatherNode severely lacks the capability to produce

embeddings good enough for node classification, despite its speed.

Figure 5.7: PBGENA’s Speedup

Some of our baselines are so far behind PBGENA in time that it hardly matters even

if they outperform us by small margins in prediction because when it comes to large

emerging networks, these methods will simply stutter. Therefore, from these results, we

can conclude that PBGENA is one of the most lightweight, high-utility NRL schemes.
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5.7.2 Robustness

In this section, we test the robustness of PBGENA on extremely challenging tasks and

see how well it performs both in terms of node classification and link prediction. In node

classification, we reduce the fraction of the embeddings supplied to logistic regression

for training steadily from 0.9 to 0.1. On the other hand, in link prediction, we increase

the fraction of edges removed from the original to the reduced graph from 0.1 to 0.9.

The results can be found in Figure 5.8.

Figure 5.8: Testing for PBGENA’s Robustness

(a) Accuracy v Training Ratio
(b) AUC-ROC v Fraction of edges re-

moved

From Figure 5.9a, we find the expected trend of node classification accuracy increasing

with an increase in training ratio. However we can make some interesting observations

here: the accuracy of none of the graphs falls below 50% even when training with only

10% of the data, and in some cases, the accuracy never falls below 80%. This ensures

that our embeddings are robust to fluctuating training ratios.

Figure 5.9b demonstrates the results of link prediction on changing the fraction of re-

moved edges. We can actually observe the obvious trend of the AUC-ROC score drop-

ping when a larger chunk of the edge set is eliminated from the residual graph. However,

we find that some curves dip more than others and this property is actually explainable

through the hyperparameters of these graphs Table A.2. A graph like PPI has a low

value for α (attribute fraction) used in its optimal hyperparameter setting. This means

that PPI relies heavily on the topology of the graph for link prediction as compared to

its attributes. Therefore removing a large fraction of the edges disrupts the structure

of the graph and causes a drop in the AUC-ROC score. Similarly, graphs like Twitter
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which has a high value of α are hardly affected by the fraction of edges removed. We

can also find in Figure 5.9b that even with 90% edges removed, the performance of

PBGENA never falls below 60% in the AUC-ROC score thus ensuring the robustness

of PBGENA in link prediction.

Figure 5.9: Robustness for various methods

(a) Accuracy v Training Ratio of the Baselines
(b) AUC-ROC v Fraction of Edges Removed of

the Baselines

We have also performed robustness experiments for our baselines using a similar setup

of experiments and again find that PBGENA is competitive with all the baselines at all

levels. The results have been presented in Figure 5.9.

5.7.3 Stability

The primary purpose of stability experiments is to test how well a model performs

with wildly fluctuating hyperparameters. These tests try to quantify how difficult it

is to fine-tune a model for specific data (in our case, graphs). If the performance of

the model fluctuates greatly with a slight change in the value of the hyperparameters,

then the model is extremely sensitive and vice-versa. Ideally, we would like a steady

performance of our method even with changing hyperparameters, and even when a

model fails then it is better to fail gradually. We have compiled our parameter sensitivity

results in Figure 5.10. These results were obtained by fixing the other hyperparameter

values in accordance with Appendix A, and changing the specific hyperparameter under

consideration from its high range to low range.

From Figure 5.10a, we note that the accuracy of embedding typically an increases with

increase in dimension, as one would expect. However, more importantly, the accuracy
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Figure 5.10: Testing for hyper-parameter sensitivity

(a) Accuracy v Dimensions
(N )

(b) Accuracy v Attribute
Fraction (α)

(c) Accuracy v Topology
bitset probability (bt)

(d) Accuracy v Attribute bit-
set probability (ba)

(e) Cora Accuracy w.r.t At-
tribute Level (la) and
Topology Level (lt)

(f) Citeseer Accuracy w.r.t
Attribute Level (la) and
Topology Level (lt)

does not plummet too much when the number of dimensions is decreased to N = 700,

ensuring stability.

From figures 5.10b, 5.10c and 5.10d, we can make out that that the only parameter that

fluctuates the most is α and once that is stabilized to its best setting, ba and bt remain

relatively stable. Again, we can see that the variability of the hyperparameters is within

acceptable range.

Finally, in figures 5.10e and 5.10f, we demonstrate the effect of multi-level edge propa-

gation on node classification results using two small graphs. We find that for these two

graphs we cannot gain a significant advantage from using the hyperparameters lt and la.

It should be noted that we had set ft = fa = 2 during our experiments (Algorithm 3).
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CHAPTER 6

CONCLUSION

This is the final section of the thesis where we summarize the research work done over

the past year with some salient points and also point to some interesting directions in

which the study can be extended in the future.

6.1 Summary

In this study, we attempt to address the problem of network representation learning,

which refers to the task of generating low dimensional embeddings for each node in

a graph with attributes associated with each node. To that end, we propose a novel

sketching-based ANE solver named BGENA which leverages efficient binary sketching

method BinSketch and edge propagation to generate fast and high-utility embeddings.

Edge propagation is the process of propagating a digest of the sketches to the neigh-

boring nodes to strengthen the first-order proximity between directly connected nodes.

The strength of the digests to be propagated can be controlled through a hyperparameter

named bitset probability. This concept of using edge propagation for modeling prox-

imity can be extended arbitrarily by using level-wise edge propagation to model any

arbitrary order of proximity between nodes in a graph. BGENA produces sparse binary

embeddings as its output thereby enabling fast bitarray/sparse-matrix representations

to save memory. We then go on to provide a scheme for parallelizing BGENA named

PBGENA using a system’s multi-core capability. PBGENA is faster than any existing

ANE solvers known to us with PBGENA achieving a speedup of 16× over BGENA

and sometimes over 1000× over some of our baselines.

PBGENA embeddings achieve performance comparable to the state-of-the-art base-

lines, often outperforming them, at a fraction of the time because of the use of purely

bitwise operations. We evaluate our results on thirteen real-world data sets and against

an array of seven state-of-the-art baselines on tasks like node classification, link pre-

diction, and graph visualization. Our dataset is composed of a variety of graphs from

citation networks, to ego networks, to biological networks. Apart from performance



testing, we also present a rich collection of parameter sensitivity experiments to have

an idea of how PBGENA works both in terms of performance and speed with changing

circumstances. We also present some initial analysis in the appendix and point to some

future directions for this study.

6.2 Takeaways

The major takeaways from this study are listed below:

• With modern data increasingly being stored as sparse billion-scale networks, it
is difficult to scale learning-based methods and still maintain acceptable perfor-
mance. Therefore, sketching-based methods are a great alternative for the future
of ANE solvers. A method like PBGENA has the potential to become a bench-
mark for the fast sketch-based methods to come in the future.

• BGENA uses the efficient dimension reduction method BinSketch and a novel
bitwise edge propagation mechanism to generate embeddings of nodes in a graph.
BGENA outputs binary embeddings which allows storage into memory-efficient
data structures like bitarrays and sparse matrices. BGENA is the only method
that was able to embed MAKG within our system’s 270GB memory cap in just 8
hours.

• PBGENA, parallelized BGENA, is the parallel version of BGENA which uses
MPI to leverage a system’s multi-core architecture to speedup BGENA signifi-
cantly. PBGENA is 1000× faster than some of our baselines and 100× faster
than the state-of-the-art baselines. PBGENA was able to embed TWeibo, a graph
with 2 million nodes and 50 million edges, in less than two minutes.

• As shown in Figure 4.2, the task of embedding topology and attributes are in-
dependent in PBGENA. This means that PBGENA can easily work for graphs
without any attribute support making it a very versatile embedding method.

6.3 Future Work

In this section, we discuss some of the future directions for this study. These include

possible extensions to the already existing method, some ideas to generalize the algo-

rithm, some alternate theory and implementations, and some improvements.
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6.3.1 Hyperparameter Tuning

One of the only hurdles to using PBGENA is undoubtedly the fine-tuning of its hyperpa-

rameters. Since we are more than 100× faster than our competitors, running PBGENA

a few times usually does not hurt. Also, this is not a problem unique to PBGENA

but it is still not insignificant. Since we often have a lot of meta-data associated with

our graphs, it may be possible to use them to recommend the hyperparameters fit for

particular graphs or at least reduce the space of hyperparameter values. We believe a

future study in the direction of analyzing PBGENA can try to use graph properties like

structure, communities, the average degree to recommend hyperparameters.

6.3.2 PBGENA with alternate hashing

The task of embedding nodes in a graph is akin to the task of dimension reduction

[15]. The literature on dimension reduction is abundant with various types of hashing

schemes capable of preserving complex similarity measures which can be ideal for

modeling proximities in a network setting. One very well-known scheme is Feature

Hashing [63] which typically uses MurmurHash3 function 1 to encode features and then

produces the sketching in any desired dimension using a linear probing like approach.

So we can potentially think of using alternate sketching methods to come up with the

sketches and then use edge propagation to pass digests of those sketches to neighboring

nodes.

6.3.3 Weighted Graphs with Real-valued Attributes

Graphs in the real world can come in all shapes and forms: weighted, directed, nodes

with real-valued attributes, and so on. PBGENA has been tested on both directed (Cora,

MAKG) and undirected (Facebook) graphs (refer to section 5.1 for information related

to datasets) and we have produced excellent results in both cases. PBGENA is actually

comparable with PANE which takes into account the directedness of the graph even

when treating the edges of a directed graph to be undirected. For graphs with real-

valued attributes and weighted edges, an easy solution would be to use the CABIN

algorithm [2] which can sketch categorical data. Binning combined with CABIN can

sketch real-valued data, but extensive experiments are needed to confirm if at all we can

1https://github.com/aappleby/smhasher
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produce better results using CABIN by utilizing the exact values of the attributes and

weights.

6.3.4 PBGENA for Attribute Inference

One lesser-known graph task is called attribute inference [64], which is similar to link

prediction but for attributes. Attribute Inference tries to predict the attribute set of the

nodes given its embeddings and requires embedding of both nodes and attributes. Typ-

ically, attribute inference tries to use the normalized inner product score between the

node and attribute embeddings as the probability for the presence of the attribute in that

specific node. We have not tried to use PBGENA to perform attribute inference but it is

something that can be in the scope of a future study.

6.3.5 PBGENA with alternate partitioning

In the algorithm for PBGENA, we have used random partitioning to divide the nodes

between different processors. This means that on average |E| ∗ (1 − 1/p) number of

cross edges appear between different partitions which constitutes the main overhead for

PBGENA (refer to subsection 4.4.1). To reduce this, we have investigated using the

METIS toolkit [50] that provides a graph partitioning with the number of cross-edges

minimized. METIS was not very useful because it itself became the bottleneck for

PBGENA. However, this does not mean we cannot do better than random partitioning.

Several fast graph partitioning [65] and community detection [66] algorithms can be

utilized for this purpose.

6.3.6 Faster PBGENA Implementation in C++

The present implementation for PBGENA is available on GitHub 11 and is written in

Python 3 [49]. Python is a very versatile language with a rich source of publicly avail-

able libraries that simplifies writing code for scientific computations. An example of

this fact is the heavy use of libraries like bitarray and mpi4py in PBGENA’s construc-

tion. However, a downside of Python is its speed as compared to other languages like

C++ [67]. Therefore, an alternate implementation of PBGENA in C++ is badly desir-

able.
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6.3.7 PBGENA for dynamic graphs

As we have already discussed in section 5.5, graphs in the real world are not static but

very dynamic with links and sometimes nodes being volatile. PBGENA is perfectly

suited for graphs of this sort because an added edge would simply mean performing a

couple of propagation steps. Further study can go into understanding the exact modifi-

cations required to transform PBGENA into an online algorithm.
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APPENDIX A

HYPERPARAMETERS

PBGENA has a total of 9 hyperparameters. However, for a constant number of proces-

sors (p), a constant number of dimensions (N ), and by setting the level parameters to 1

(lt = la = 1, ft = None, fa = None), we end up with three essential hyperparameters-

the attribute fraction (α), the topolgy bitset probability (bt), and the attribute bitset prob-

ability (ba). These are the three hyperparameters we are most concerned about and need

to optimize for a given setup. Grid searching over the entire space of the hyperparam-

eter values is simply not possible, so we employ a greedy strategy to reach a good but

sub-optimal result. We first set bt = ba = 0 and find the optimal value for the at-

tribute fraction. Then we fine-tune ba with the fixed value for α and bt = 0. Finally,

we fine-tune bt. The results reported in section 5.4 and section 5.5 are based on the

hyperparameters mentioned in tables A.1 and A.2.

Table A.1: PBGENA Node Classification Hyperparameters

Graph α ba bt
Wikipedia 0.85 0.00 0.20

Cora 0.60 0.80 0.80
CiteSeer 0.80 0.90 0.40
Facebook 0.50 0.70 0.60

BlogCatalog 0.60 0.00 0.00
Flickr 0.90 0.00 0.85

PubMed 0.65 0.00 0.80
PPI 0.10 0.95 0.50

Twitter 0.60 0.00 0.00
Google+ 0.15 0.50 0.00
Reddit 0.10 0.00 0.00

TWeibo 0.60 0.00 0.00
MAKG 0.85 0.86 0.60

To optimize the hyperparameters for large graphs we only looked at α = {0.2, 0.4, 0.6, 0.8}

and bt = ba = {0.1, 0.2, 0.4, 0.6, 0.8, 1.0} which means we need to perform 16 runs of

the algorithm and sometimes we would understand the trend and only need to perform 4

to 6 runs. Since PBGENA is almost 100× faster than most baselines, running PBGENA

for a few extra times usually does not hurt. However, as discussed in subsection 6.3.1,

we do understand that this may be a roadblock for PBGENA so there needs to be some



Table A.2: PBGENA Link Prediction Hyperparameters

Graph α ba bt
Wikipedia 0.95 0.20 0.20

Cora 0.60 0.30 0.40
CiteSeer 0.90 0.20 0.40
Facebook 0.80 1.00 0.00

BlogCatalog 0.90 0.20 0.00
Flickr 0.90 0.00 0.00

PubMed 0.95 0.20 0.20
PPI 0.10 0.00 0.10

Twitter 0.95 0.00 0.20
Google+ 0.90 0.05 0.10
Reddit 0.95 0.20 0.00

TWeibo 0.95 0.00 0.00

form of the theoretical basis for choosing the hyperparameters or at least limit the search

space for the hyperparameters. This might lead us to use some structural features of the

graph for generating a recommendation on what values may be most suited. Having

said this, this topic is beyond the purview of this thesis and is a concern for a future

endeavor.
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APPENDIX B

ANALYSIS

Theorem B.0.1. The speedup (S) is increasing in terms of p

S = p ∗ N |V |+N |E|+ |A|
N |V |+ (p+ 1)N |E|+ |A|

Proof: Let X = N |V |+N |E|+ |A|. Now we have,

S =
pX

X + p|E|
∂S

∂p
=

X2

(X + p|E|)2
(quotient rule)

Now
∂S

∂p
> 0; ∀p ∈ N

Therefore S is an increasing function with respect to p.

Theorem B.0.2. The space complexity for PBGENA is O(N |V |) bits

Lemma B.0.3. The number of duplicated digests is at most twice the number of vertices

having at least one cross-edge

Figure B.1: Duplicated digests

Proof: This fact is almost self-evident because if an edge (u, v) is shared between two

processors, then the digest for u (D[u]) must be shared with the processor hosting v and



vice-versa. This fact is demonstrated in Figure B.1 where the number of vertices with a

cross edge is 6 and the number of duplicated digests is 8 ⩽ 2 ∗ 6.

Let m be the maximum degree of all nodes in the graph and let u be a node with degree

m′ ≤ m. Now the probability that all neighbors of node u lie within its own partition is

(1
p
)m

′ (where p is the number of processors/partitions, refer to subsection 4.4.1 for the

justification). This means that the probability that at least one neighbor of u lie outside

its partition is 1− (1/p)m
′ .

Therefore, the expected number of nodes that has some neighbor in a different partition

= |V |(1− (1/p)m
′
). Therefore the space complexity of PBGENA becomes, keeping in

mind Lemma B.0.3:

O
(
N |V |

(
1−

(
1/p

)m′)
+N |V |

)
(B.1)

Now (1 − (1/p)m
′
) ≤ 1, therefore the space complexity of PBGENA reduces to

O(N |V |).
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